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Since their first detection in 2010, Plasmodium falciparum malaria parasites 
lacking the P. falciparum histidine-rich protein 2 gene (pfhrp2) have been 
observed in 40 of 47 surveyed countries, as documented by the World 
Health Organization. These genetic deletions reduce detection by the 
most widely used rapid diagnostic tests, prompting three countries to 
switch to alternative diagnostics. However, manufacturing of alternative 
rapid diagnostic tests has not been scaled up and there are no World 
Health Organization-prequalified combination tests that use P. falciparum 
Plasmodium lactate dehydrogenase. The continuing spread of pfhrp2 
and/or pfhrp3 (pfhrp2/3) deletions threatens malaria control, creating 
an emerging public health crisis. Here we use mathematical modeling 
informed by current pfhrp2/3 deletion prevalence and a literature review 
to assess the global risk of pfhrp2/3 deletions. We identify ten priority 
countries for surveillance and predict that the primary spread in Africa 
will move southward from the Horn of Africa through East Africa within 
20 years. Despite variation in modeled timelines due to uncertainty in 
model parameters, four countries yet to switch rapid diagnostic tests are 
consistently classified as high risk under a range of model assumptions. 
This updated model offers refined predictions to guide pfhrp2/3 policy and 
prioritize future surveillance efforts and innovation.

The expanded use of malaria rapid diagnostic tests (RDTs) in the last 
20 years has been central to global malaria control efforts to test, treat 
and track all malaria infections, with 262 million RDTs distributed in 
2021 by national malaria programs and 413 million sold by World Health 
Organization (WHO)-prequalified manufacturers1. The RDTs commonly 
deployed for diagnosis of falciparum malaria detect Plasmodium falci-
parum histidine-rich protein 2 (Pf-HRP2) and its paralog P. falciparum 
histidine-rich protein 3 (PfHRP3). However, progress against malaria 

is now threatened by an increase in pfhrp2 and/or pfhrp3 (henceforth 
termed pfhrp2/3) gene deletions resulting in false-negative RDT results. 
In 2014, a review was conducted that called for a harmonized approach 
to investigate and report pfhrp2/3 gene deletions2. As of 2023, the WHO 
Malaria Threat Maps included reports of pfhrp2/3 deletions in 40 of  
47 countries surveyed worldwide3 and reports of pfhrp2 deletions  
causing false-negative rates have been as high as 80% in the worst 
affected settings4. Once detected, there are concerns that pfhrp2/3 
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incidence of nonmalarial febrile illness—all factors expected to impact 
the selective advantage of pfhrp2 deletions. However, new studies and 
data provide improved insight into these processes. For example, 
HRP3 crossreactivity has been shown to be higher than previously 
thought, with HRP3 crossreactivity on HRP2-based RDTs sufficient 
to mask the effects of pfhrp2 deletions in in vitro cultures with a high 
parasite density18. However, crossreactivity will differ between brands 
depending on the target epitopes of the antibodies bound to the test 
strips19 and target field data from patients in Ethiopia who are malaria 
symptomatic showed different performance with 46% (12 of 26) of 
pfhrp2−/3+ samples yielding a positive HRP2-based RDT5. With regard 
to the evolutionary mechanism driving pfhrp2/3 selection, population 
genetic analyses conducted in Ethiopia concluded that pfhrp3 deletion 
has arisen independently multiple times, whereas pfhrp2 deletion likely 
arose more recently due to the strong positive selection resulting from 
an HRP2-RDT-based test-and-treat policy5. Understanding how strongly 
pfhrp2 deletion is linked to pfhrp3 deletion is critical—if these two dele-
tions co-occur more than would be expected by chance (analogous to 
positive linkage disequilibrium (LD) but between genes on different 
chromosomes), the benefits for RDT performance conferred by HRP3 
crossreactivity will be negated. Last, in vitro competition assays of 
asexual parasite fitness suggest that up to a 90% relative fitness (a 10% 
loss in replicative rate) may be associated with pfhrp2 deletions20, 
although no in vivo or feeding assay studies have been conducted to 
assess fitness costs throughout the parasite life cycle.

In this study, we incorporated recent advances in our understand-
ing of pfhrp2/3 deletions and new data relevant to their spread to pro-
vide a global assessment of the risk posed by pfhrp2/3-deleted parasite 
strains. Specifically, we used a mathematical model of malaria trans-
mission and selection of pfhrp2 deletions to evaluate the susceptibility 
of each malaria-endemic region to select for pfhrp2 deletions, once 
deleted parasites become established in that region. Last, we predicted 
the continued spread of pfhrp2 deletions globally with a focus on 
sub-Saharan Africa (SSA) based on best estimates of the prevalence of 
pfhrp2 deletions. The resultant maps of the risk that pfhrp2 deletions 
pose can be used to guide ongoing surveillance efforts, future deploy-
ment of alternative RDTs and research to improve our understanding 
of the biology and threat of pfhrp2/3 deletions.

Results
Fitness and crossreactivity estimation for pfhrp2 and pfhrp3
To estimate the risk posed by pfhrp2/3 deletions, we first estimated the 
probability of pfhrp3 deletions co-occurring with pfhrp2 deletions and 
the fitness costs associated with pfhrp2 deletions based on data in the 
Horn of Africa. Using survey data reporting the prevalence of pfhrp2 
and pfhrp3 deletions from the WHO Malaria Threat Maps database3, we 
estimated that, globally, 61.7% (95% CI 55.3–67.8%) of pfhrp2-deleted 
samples also had pfhrp3 gene deletions. The distribution across studies 
of the percentage of pfhrp2-deleted samples with pfhrp3 gene deletions 
was highly overdispersed, with clear differences between countries. 
Focusing on studies conducted in Africa (Fig. 1), we estimated that 
52.1% (95% CI 42.9–60.9%) of pfhrp2-deleted samples also had pfhrp3 
gene deletions (Fig. 1a). We observed significant nonrandom associa-
tion (χ2 = 1,747.9, degrees of freedom = 1, P < 2.2 × 10−16) based on the 
observed counts of pfhrp2- and pfhrp3-deleted parasites (Table 1). A 
further strong indication of the positive linkage between pfhrp2 and 
pfhrp3 deletions was observed based on the normalized coefficient 
of LD (= 0.557).

We found a significant negative relationship between malaria 
prevalence and pfhrp3 gene deletion prevalence among pfhrp2-deleted 
samples with a log(odds ratio) (log(OR)) of −0.3017 (95% CI −0.3340 
to −0.2695, P < 2.2 × 10−16) (Supplementary Table 1), with surveys con-
ducted in regions with higher malaria prevalence less likely to observe 
pfhrp2-deleted samples among samples with pfhrp3 deletions (Fig. 1b). 
We also observed significantly lower frequencies of pfhrp3 deletions in 

deletions may be rapidly selected for, as demonstrated by observa-
tions in Eritrea and Ethiopia4,5. There are alternative, non-HRP2-based 
RDTs that target alternative antigens such as Plasmodium lactate dehy-
drogenase (pLDH). Pan-specific pLDH RDTs have not, however, been 
brought to scale because of their lower sensitivity compared to HRP2 
and, for countries that need to both detect and distinguish between 
P. falciparum (Pf) and P. vivax, there are no WHO-prequalified combi-
nation tests that use Pf-pLDH instead of or in addition to HRP2 for P. 
falciparum detection. This has posed particular challenges because 
pfhrp2/3 deletions have emerged and become dominant in several 
countries that require this type of combination product, for example, 
Eritrea, Ethiopia, Djibouti, Peru and Brazil. Most other countries con-
tinue to rely on Pf-HRP2-based RDTs as their primary malaria diagnostic 
tool, so emergence and spread of pfhrp2/3-deleted strains represents a 
growing public health crisis and poses a major obstacle to the control 
and eradication of P. falciparum.

Accurate maps of pfhrp2/3-deleted strains and their impact on 
HRP2-RDT results are needed to understand the current risk to malaria 
control but also to parameterize the risk of future spread. Multiple 
molecular surveys have been undertaken to characterize the current 
spread and estimated prevalence of parasites with pfhrp2/3 deletions 
(genotype frequency of pfhrp2/3 deletions). However, accurately 
estimating the true frequency of pfhrp2/3 deletions, their impact on 
HRP2-RDT results and the risk that they pose to malaria control is chal-
lenging. One challenge is the need to harmonize estimates of pfhrp2/3 
deletions across studies with different sampling and laboratory-testing 
schemes, which prompted the WHO to publish methodological guid-
ance and protocols in 2018 for studying pfhrp2/3 deletions6. However, a 
review of published surveys7 concluded that unrepresentative surveys 
(sampled population not representative of the whole population, 
for example, sampling only from severe malaria cases or sampling 
HIV-positive individuals) and inconsistent study design have impaired 
efforts to evaluate the risk of P. falciparum malaria cases being misdi-
agnosed due to pfhrp2/3 deletions. In addition, more recent surveys 
with newer laboratory techniques for detecting pfhrp2/3 deletions 
have detected lower frequencies of pfhrp2/3 deletions8 than previous 
surveys9. Second, evidence suggested that there are differences in the 
phenotypes associated with deleted parasites between geographical 
regions. For example, in the Democratic Republic of Congo (DRC), a 
high level of deletions (6.4%, 95% confidence interval (CI) 5.1–8.0%) 
was found when using asymptomatic samples from the Demographic 
and Health Surveys (DHS)10. However, a subsequent study in symp-
tomatic patients using improved laboratory methods in the same 
regions found no symptomatic malaria cases with pfhrp2 deletions11. 
In contrast, Eritrea4,12 and Djibouti13,14 are affected by a high frequency 
of pfhrp2/3-deleted parasites that cause symptomatic and clinically 
relevant infections. Furthermore, in Peru, deleted parasites emerged 
in settings that have never relied on HRP2-based RDTs for diagnosis, 
prompting speculation that deletions offer an as yet undefined selec-
tive advantage in this context beyond evasion of diagnosis15. These 
distinct phenotypes imply different immediate risks to malaria control 
and suggest that different evolutionary pressures are driving hetero-
geneous spread of pfhrp2/3 deletions across regions16.

In 2017, an individual-based mathematical model of malaria 
transmission characterizing the drivers of selection for pfhrp2 dele-
tions was developed, identifying malaria transmission intensity and 
treatment-seeking rates for malaria infection as the two largest drivers 
of pfhrp2/3 deletions17. However, there were insufficient data to com-
prehensively account for other risk factors (Extended Data Table 1), 
such as the impact of pfhrp2 gene deletions on parasite fitness and 
the different mechanisms of selection driving the distinct spread 
between pfhrp2 and pfhrp3 deletions. In addition, limited data were 
available to parameterize the proportion of malaria cases diagnosed 
by microscopy, the level of adherence to RDT-based treatment, the 
crossreactivity of HRP3 epitopes to yield a positive HRP2-RDT and the 
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surveys conducted in regions with higher malaria prevalence (Fig. 1c). 
A different relationship between pfhrp2/3 independence and malaria 
prevalence was observed on the other continents; studies in Asia 
showed insignificant associations between pfhrp3-deletion frequency 
and malaria prevalence (Supplementary Fig. 1).

Using longitudinal data on pfhrp2/3 deletions from Eritrea and 
Ethiopia, we fit our malaria transmission model to jointly infer param-
eter values for both the fitness costs of pfhrp2 deletions and the cross-
reactivity of HRP3 epitopes. We estimated relative fitness of 96.4% (95% 
CI 95.3–97.3%) for pfhrp2 deletions (that is, the relative contribution of 
deleted parasites to onward infections each day = 96.4% of that from 
wild-type parasites). From the results of the same model fitting, we 
estimated the probability that an infection due to only pfhrp2-deleted 
parasites would still produce a positive HRP2-based RDT (HRP3 crossre-
activity producing a positive test outcome) of 25.0% (95% CI 14.0–41.0%) 
(Supplementary Fig. 2).

Modeling the impact of drivers of selection for pfhrp2 
deletions
To fully evaluate the risk of selection for pfhrp2/3 deletions, we con-
ducted a literature review to identify and extract estimates for addi-
tional known drivers of pfhrp2/3 selection (Extended Data Table 1). 
We found parameter estimates for most of the risk factors identified; 
however, sources from reported WHO national data or the academic 
literature failed to identify suitable estimates for all malaria-endemic 
countries. To address this, we identified previous efforts by other 

groups that produced modeled parameter estimates at either the 
national or the first administrative unit, notably the Commodities 
Forecast Dashboard by the Malaria Atlas Project21. When compared 
against our literature review, we found broad agreement in the data 
sources identified (Supplementary Information), which resulted 
in similar estimates as produced by the Malaria Atlas Project for 
modeling trends in malaria commodities22. However, we identified a 
number of outliers, totaling <0.5% of all parameters collected. These 
included outliers that reflected gaps in nationally reported data, 
for example, zero reported cases to the WHO of malaria tested by 
RDT and edge cases, such as ~100% of individuals with care-seeking 
malaria infections, who are not tested, receiving treatment. In 
response, outliers were identified and multiple imputations using 
random Forest plots were used to correct outliers based on the 
other collected covariates, yielding global maps of each parameter 
(Supplementary Figs. 3–6).
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Fig. 1 | Distribution and independence of pfhrp2/3 deletions in Africa among 
surveys of symptomatic individuals collated from the WHO Malaria Threat 
Maps database. a, Percentage of pfhrp2-deleted samples together with pfhrp3 
deletions. The mean and 95% CI are shown with points and ranges, with the 
vertical dashed line indicating the continent-wide estimate based on a beta-
binomial model. The sample size per country is: Burkina Faso (32), Cameroon 
(49), DRC (3), Djibouti (272), Eritrea (198), Ethiopia (195), Gabon (2), Ghana 
(37), Equatorial Guinea (92), Kenya (29), Madagascar (1), Mozambique (201), 
Nigeria (18), Senegal (3), Sierra Leone (2), South Sudan (85), Chad (10), Togo 

(1), Tanzania (25), Uganda (73) and Zambia (12). b, Relationship between the 
percentage of pfhrp2-deleted samples with pfhrp3 deletions and malaria slide 
prevalence in 2–10 year olds based on the Malaria Atlas Project estimates. c, 
Relationship between the percentage of samples with pfhrp3 deletions and 
malaria prevalence. In all plots, the point size represents the number of samples 
from each survey used to derive estimates. In b and c, an overdispersed binomial 
regression model fit (blue) shows the mean relationship, with the 95% CI of the 
regression fit shown with shaded bands. Data is the from WHO Malaria Threat 
Maps database3.

Table 1 | Frequency of pfhrp2/3 deletions in Africa

pfhrp3 deleted pfhrp3 wild-type Total

pfhrp2 deleted 595 851 1,446

pfhrp2 wild-type 392 7,736 8,128

Total 987 8,587 9,574

The table shows the total number of samples categorized by pfhrp2/3 gene deletion from 
studies available in the WHO Malaria Threat Maps database3.
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Using our model of malaria transmission, we conducted 43,740 
simulations across the full range of parameters identified for each 
country. We trained an ensemble machine learning model to accu-
rately predict selection coefficients based on these simulations 
(Supplementary Fig. 7). Based on the partial dependence of the 
ensemble statistical model, we identified malaria prevalence as the 
most important determinant of the selection of pfhrp2 deletions 
(Supplementary Fig. 8), with selection of pfhrp2 deletions notably 
increasing at malaria prevalence <20% based on microscopy slide 
prevalence in 2–10 year olds (Supplementary Fig. 8a). Treatment 
cascade parameters (nonadherence to RDT test outcomes, use of 
non-HRP2-based RDTs for testing and the HRP3 crossreactivity) 
had similar inferred effect sizes on the selection of pfhrp2 deletion 
(Supplementary Fig. 8c–f), reflecting their similar role in altering the 
probability that an individual is treated based only on the outcome of 
an HRP2-based RDT.

Mapping the risk posed by pfhrp2 deletions
We quantified the risk posed by pfhrp2/3 deletions using two 
approaches: the ‘innate risk’ and ‘prospective risk’. First, we estimated 
the ‘innate risk’, defined as the time taken for the percentage of clinical 
cases to be misdiagnosed by Pf-HRP2-based RDTs to increase from 1% to 
5% (WHO threshold to switch to non-HRP2-based RDTs) in each region, 
if using only HRP2-based RDTs. The innate risk captures the innate 
susceptibility of each region to select for deletions once established. 
We predicted that 73 of 106 countries modeled would have at least 1 
first administrative unit reach the 5% threshold within 20 years (Fig. 2). 
We predicted that most of the highest-risk regions are very low trans-
mission regions (<0.05% malaria prevalence); however, evolutionary 
trajectories in these settings are highly uncertain. The very low malaria 
prevalence, and consequently the small effective population size, is 
predicted to increase the stochasticity in the dynamics of pfhrp2 dele-
tions—similar to classic findings of the relationship between genetic 
drift and selection23. Consequently, there is also the increased chance 
that deleted strains will stochastically fade out due to small malaria 
population size, rather than increasing despite conditions being favora-
ble for the selective advantage conferred by pfhrp2 deletions to be 
realized. Conversely, we predicted a low risk of pfhrp2 deletions in 
the highest malaria prevalence regions in Central and Western Africa, 
with estimated times to reach the 5% threshold in excess of 40 years.

Focusing on countries with >0.05% estimated malaria slide preva-
lence in 2020, we identified 20 countries in which most of the first 
administrative units were classified as high innate risk (reaching the 5% 
threshold within 6 years) (Table 2). All but three countries (Solomon 
Islands, Papua New Guinea and Guyana) are in Africa, with most of these 
countries in Africa representing those in which pfhrp2/3 deletions 
have already been identified (for example, Djibouti, Eritrea, Ethiopia 
and Gambia). Notably, a few regions in Djibouti are predicted to have a 

marginal risk, which reflects the recent increases in malaria transmis-
sion and contrasts with the previously lower malaria prevalence in these 
regions, which would have increased selection for pfhrp2/3 deletions. 
However, we found a large range in assigned risk scores when we com-
pared risk scores across the range of parameter uncertainties for each 
region (Fig. 3). Most of the uncertainty in selection speed for pfhrp2 
deletions is due to wide uncertainties in malaria prevalence for each 
first administrative unit. For example, malaria prevalence estimates 
in Yobe, Nigeria for 2020 range between 10% and 40%, which corre-
sponds to an absolute change in selection coefficient of 0.3 (that is, an 
absolute increase of 30% in the annual proportional change in pfhrp2 
deletions). This change in predicted selection coefficients would result 
in a change in regional classification from marginal concern (1–5% in 
>20 years) to high concern (1–5% in <6 years). Despite this uncertainty, 
we identified a number of regions that are consistently classified as 
high concern across the range of parameter uncertainties, such as in 
Eritrea, Ethiopia, Zambia and Tanzania, and a number of regions in 
Central and West Africa that are consistently classified as marginal 
risk (1–5% in >20 years).

Although the innate risk captures the underlying selection dynam-
ics, it does not incorporate data on the current distribution of pfhrp2/3 
deletions in Africa. Consequently, we also estimated the ‘prospective 
risk’, which is calculated using simulations of the continued spread of 
pfhrp2 deletions in Africa, based on current estimates of pfhrp2/3 dele-
tions from the WHO Malaria Threat Maps3 and assuming that countries 
maintain their existing RDT procurement and usage patterns. In Africa, 
we predicted that 28 of the 49 countries modeled have at least one first 
administrative unit predicted to reach the 5% threshold or have already 
reached the 5% threshold within 20 years (Fig. 4). If HRP2-based RDTs 
remain the mainstay of malaria case management, we predicted that 
the major route for pfhrp2 deletions is to spread south out from the 
current hotspot in the Horn of Africa, moving through East Africa over 
the next 20 years. In addition, deletions identified in Western Africa 
are predicted to increase, especially in Senegal and Mali. Prospec-
tive risk scores classified fewer regions as high risk than innate risk 
scores (Supplementary Fig. 11). Across both risk scores, however, a 
number of countries are predicted to be identified as being high risk 
in the majority (>50% of first administrative units; Table 2), including 
Djibouti, Eritrea, Ethiopia, Senegal, Zambia and Kenya. Similar to the 
innate rsk score, there is considerable uncertainty in the modeled 
timelines for the spread of deletions. Interactive risk maps for each 
parameter scenario are available at https://worldhealthorg.shinyapps.
io/DeletionRiskExplorer (Supplementary Fig. 12).

Discussion
In this study, we modeled the global risk of selection and spread of 
pfhrp2 deletions and confirmed the threat they pose to malaria control 
efforts in Africa if case management continues to rely on HRP2-based 
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Fig. 2 | Global distribution of predicted times in years for the percentage of 
clinically relevant infections misdiagnosed due to pfhrp2/3 gene deletions to 
increase from 1% to 5%. Regions estimated not to reach 5% within 40 years are 

shown in blue. Regions with very low, unstable malaria transmission (defined as 
<0.05% malaria slide prevalence in 2–10 year olds) are shown with diagonal gray 
lines (see Supplementary Fig. 9 for focus on Africa). PfPR, P. falciparum prevalence.
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diagnosis. Incorporating the most recent understanding of deletions 
and the best estimates of key model parameters, we found that malaria 
prevalence was the most important driver of deletions globally. How-
ever, uncertainty in malaria prevalence data, further exacerbated by 
the pandemic-induced delay in key data sources such as the DHS, limits 
confidence in regional risk estimates. In response, we investigated a 
range of scenarios and uncertainties to identify countries and regions 
at highest risk from deletions across the range of scenarios explored. 
Globally, most malaria-endemic areas, and especially those with very 
low prevalence, are predicted to select for deletions rapidly. In Africa, 
this includes regions in the Horn of Africa, East Africa and a few coun-
tries in West Africa, such as Senegal and Mali.

Our findings contrasted with earlier pfhrp2 deletion risk maps 
and timelines17 in several notable ways. First, our approach focused 

on a different outcome measure, namely the proportion of clinically 
relevant malaria cases misdiagnosed due to gene deletions, consistent 
with current WHO policy guidance24. Second, we incorporated the 
best available data on current deletion prevalence to evaluate how 
deletions may spread between regions and focused only on surveys of 
symptomatic patients to ensure that our estimates of pfhrp2 and pfhrp3 
deletions align with the criteria for the WHO 5% threshold. Third, we 
produced an interactive tool for decision-makers to explore the risk 
maps for each parameter scenario and understand how each parameter 
impacts the selection of pfhrp2 deletions. However, despite incorporat-
ing current best estimates, these projections need to be viewed with 
the appropriate uncertainty due to considerable gaps in surveillance 
of pfhrp2/3 deletions, as well as heterogeneity in the quality and con-
sistency of previously conducted pfhrp2/3 surveys7. Consequently, the 
results should be viewed as tools to consider how the two components 
for mapping the potential spread of deletions—a region’s innate sus-
ceptibility for deletions to increase once established (dependent on a 
region’s malaria transmission intensity, treatment-seeking data and 
RDT usage data) and the spatial connectivity to regions with high levels 
of deletions—may interact to drive the spread of deletions. Despite their 
simplicity, these results could help guide control interventions to stem 
the threat of pfhrp2/3 deletions, particularly in identifying regions that 
need to be prioritized for surveillance to provide accurate data before 
deciding whether to switch front-line RDTs. Outside regions that have 
already switched front-line RDTs are countries including Senegal, 
Zambia and Kenya.

Fewer regions are identified as high risk based on the prospective 
risk score compared to the innate risk score for two primary reasons. 
First, the prospective risk score incorporates estimates of the propor-
tion of RDTs in use in a country that are not only HRP2 based. Conse-
quently, countries that primarily use non-HRP2-based RDTs, such as 
Rwanda (primarily using Pf-RDTs and/or pan-RDTs based on the Global 
Fund and President’s Malaria Initiative data25), will not select for pfhrp2 
deletions. Second, the prospective risk score is seeded with current 
estimates of pfhrp2 deletion prevalence in each country. Countries 
without surveys or <1% pfhrp2 deletions, such as Tanzania, are predicted 
to reach the 5% threshold slower than in the innate risk scenario, which 
explores timelines from a starting frequency of 1% pfhrp2 deletions. 
We chose to produce two risk maps (the innate and prospective risks) 
because robust molecular surveys of pfhrp2/3 deletions have not been 
conducted across all regions. Although surveillance for pfhrp2/3 dele-
tions has increased rapidly since the widespread introduction of RDTs, 
by the start of 2023 surveys had been conducted in only 22 countries 
in Africa3. For the prospective risk score, we made the simplifying 
assumption that countries without surveys have 0% pfhrp2 deletion 
frequency. If this assumption is incorrect, the prospective risk score 
will underestimate the risk in these countries.

The innate risk score differs from the prospective risk score 
by simply focusing on the risk that pfhrp2 deletions pose once pre-
sent in a region (and assuming that the region has not switched to 
non-HRP2-based RDTs alone or in combination with HRP2). Providing 
both risk scores has several advantages. The innate risk score can be 
used to confirm that the model correctly identifies regions in which 
deletions have rapidly increased as high risk. Indeed, the maps of 
innate risk (Fig. 3) correctly identify the Horn of Africa as a region of 
consistently high risk. The innate risk score can also be used to address 
additional questions relevant to malaria policies, including where to 
prioritize surveillance given plateauing levels of funding and com-
peting demands1. For example, if deciding among countries without 
previous surveys, the innate risk score can be used to identify countries 
predicted to select for deletions fastest and therefore in greatest need 
of surveillance and/or early transition to non-HRP2-based RDTs. Last, 
among countries that have switched away from HRP2-based RDTs, the 
innate risk score provides an indication of whether these regions would 
still select for deletions if they switched back to HRP2-based RDTs.

Table 2 | High-risk countries by risk score

Country Percentage of first administrative  
units with high innate risk

Comoros 100.0

Eritrea 100.0

Ethiopia 100.0

Gambia 100.0

Guyana 100.0

Madagascar 100.0

Namibia 100.0

Papua New Guinea 100.0

Rwanda 100.0

Senegal 100.0

Tanzania 100.0

Zimbabwe 100.0

Solomon Islands 100.0

Kenya 93.6

Guinea-Bissau 88.9

Yemen 84.2

Guyana 80.0

Mauritania 66.7

Djibouti 60.0

Somalia 50.0

Zambia 50.0

Country Percentage of first administrative  
regions with high prospective risk

Djibouti 100.0

Eritrea 100.0

Ethiopia 100.0

Senegal 100.0

South Sudan 100.0

Sudan 100.0

Kenya 95.7

Ghana 90.0

Equatorial Guinea 85.7

Zambia 60.0

The percentage of first administrative units classified as high innate or prospective risk  
(>5% of clinically relevant infections misdiagnosed due to pfhrp2/3 gene deletions in <6 years, 
given a starting frequency of pfhrp2 deletions of 1%) is shown. Only countries in which 
≥50% regions are classified as high risk are shown. The data presented are derived from the 
mathematical modeling detailed in Methods.
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Our approach has several important limitations. First, our explo-
ration of international spread employs a simplistic approach for 
how deletions are exported between regions. Second, the model 
parameters carry a high degree of uncertainty. Our estimates of 
fitness costs are derived from model fitting to a handful of surveys 
with large differences in the number of samples, which led to a high 
prediction of the inferred fitness costs, suggesting smaller fitness 
costs than observed from in vitro experiments20. Therefore, they 
may not reflect the fitness costs associated with pfhrp2 deletion 
in parasites outside the Horn of Africa and we do not consider the 
potential for new pfhrp2-deleted strains to emerge with increased 
fitness. Once additional longitudinal deletion data are available, 
selection coefficients can be more accurately inferred and fitness 

costs should be estimated again. However, the degree of uncertainty 
in certain key parameters, such as malaria prevalence, highlights 
the need for data to provide more precise estimates of key drivers of 
pfhrp2/3 selection. These same data are needed to model the spread 
of artemisinin partial resistance26, which is now spreading in a num-
ber of regions in Africa27–29. Third, our model assumes that malaria 
prevalence and treatment will remain constant in the future. Fourth, 
the country-specific estimates of linkage between pfhrp2 and pfhrp3 
deletions provided here assume that the dynamics of these two loci 
are at equilibrium and no selective forces are acting to pull certain 
genotypes, such as deletion of both pfhrp2 and pfhrp3, to higher 
levels. However, we have observed a significant relationship between 
deletions and malaria prevalence that aligns with recent mechanistic 
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Fig. 3 | Innate risk score for the concern caused by pfhrp2 deletions in Africa. 
High (red), moderate (yellow) and slight (teal) risk representing >5% of clinically 
relevant infections misdiagnosed due to pfhrp2/3 gene deletions in <6, 12 and 
20 years, respectively, and marginal risk (blue) representing <5% in 20 years. 
Uncertainty in model parameters for each region impacts the risk scores, with the 

worst-case (right), central-case (middle) and best-case (right) scenarios (based 
on the uncertainty in the range of parameters explored) shown. Regions with very 
low, unstable malaria transmission (defined as <0.05% slide prevalence in  
2–10 year olds (PfPR)) are shown with diagonal gray lines (see Supplementary  
Fig. 10 for global risk scores).
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Fig. 4 | Prospective risk scores for pfhrp2 deletions in Africa. a, The prospective 
risk score modeling continued spread of deletions based on current best 
estimates of the prevalence of pfhrp2 deletions as collated in the WHO Malaria 
Threat Maps database (2023)3. b,c, In this model, assumptions that deletions 
are imported into a region from a neighboring region once they have reached a 
prevalence of 25% (b, 2024) and selection of deletions in a region determined by 

that region’s transmission intensity and treatment-related parameters (c, 2025). 
d–f, The predicted spread of false-negative RDTs due to pfhrp2/3 deletions in 
Africa over the next 20 years: 2023 (d); 2033 (e); 2043 (f). The color bar shows the 
percentage of clinically relevant infections misdiagnosed due to pfhrp2/3 gene 
deletions (Supplementary Video 1).
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explanations of how pfhrp3 deletions arise and may be driven by low 
malaria prevalence30. If malaria prevalence falls in a region, in addi-
tion to the increased selection of pfhrp2 deletions that occurs at low 
prevalence, the frequency of pfhrp3 deletions may also increase, 
furthering the selection of pfhrp2 deletions. In response, additional 
surveillance data of both pfhrp2 and pfhrp3 deletions are needed, 
which can be leveraged to test hypotheses of how non-RDT-mediated 
processes drive pfhrp3 deletion emergence and subsequently create a 
selective niche for pfhrp2 deletions. Last, although we have modeled 
how HRP2-based RDTs create a selective pressure for pfhrp2 deletions, 
this process does not capture the historic process by which pfhrp2 
deletions have emerged in South America, which occurred without 
this pressure. These results are, however, still relevant in identifying 
that these regions are susceptible to selecting for deletions, given 
the low malaria prevalence if they relied on HRP2-based RDTs, while 
also noting that a greater understanding of the fundamental biology 
and evolution that led to the selection of pfhrp2 deletions in regions 
in South America is needed.

The issues surrounding spread of pfhrp2/3 deletions are not unique 
to malaria. Management strategies for controlling RDT-evasive geno-
types can be borrowed from the drug-resistance management litera-
ture, which provides evaluations of how multiple antimalarial therapies 
can be deployed31,32. RDTs employing multiple proteins for diagnosis 
(for example, Pf-HRP2 and Pf-LDH) are analogous to combination 
therapies, in that a parasite lineage would need to acquire two genetic 
mechanisms simultaneously to evade detection. Deployment of both 
HRP2-based RDTs and non-HRP2-based RDTs or microscopy in a single 
population is similar to the multiple first-line therapy33 approach of 
slowing down resistance, in that an RDT-evasive parasite is likely to 
undergo diagnosis with a different RDT in the next patient whom it 
infects. These approaches would first need to be field tested to ensure 
adequate procurement, distribution and compliance before evaluat-
ing their potential for slowing down or reversing the evolution of RDT 
evasion. Furthermore, these strategies become challenging for areas 
sympatric for both P. falciparum and P. vivax, for which we would need 
new RDTs at scale to address the current absence of WHO-prequalified 
combination tests that use Pf-pLDH instead of, or in addition to, HRP2 
for P. falciparum detection. The decreased sensitivity for LDH relative 
to HRP2 may, however, still result in a selective advantage, although 
likely greatly reduced.

In conclusion, this study provides a refined and updated predic-
tion model for the emergence of pfhrp2/3 deletions. Despite its limita-
tions, our models offer valuable insights that can help policy-makers 
prioritize surveillance and future deployment of alternative RDTs, 
leveraging our interactive tool to identify the regions that are con-
sistently identified as high risk. It should also signal to test develop-
ers and manufacturers where new markets are likely to emerge first 
for alternatives to exclusive HRP-RDTs. As our understanding of the 
complex processes driving pfhrp2/3 deletions improves and more 
data become available, we will continue to refine and update our 
predictions and monitor the increasingly concerning threat posed 
by pfhrp2/3 deletions.
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Methods
P. falciparum transmission model
In this study, we employed a previously developed, individually based, 
mathematical model of P. falciparum malaria transmission to simulate 
the selection of pfhrp2 deletions17. The model monitors the transmis-
sion of pfhrp2-deleted parasites and wild-type parasites (that is pfhrp2+) 
between human and mosquito hosts. We describe the model in brief 
here (see ref. 17 for the full model description and parameters) before 
detailing further considerations related to pfhrp3 dynamics and the 
data sources used to parameterize the model for simulating pfhrp2 
deletions globally.

Individuals are born with maternally acquired immunity that 
decays within the first 6 months, rendering them susceptible to infec-
tion from infectious mosquito bites. Exposure depends on the ento-
mological inoculation rate, which is location specific. The rate at which 
individuals are bitten by mosquitoes increases with age and is also 
heterogeneous across the population due to individual-level biting 
heterogeneity. On infection, individuals acquire either a pfhrp2-deleted 
parasite or a wild-type parasite. This is determined by the genotype 
frequency of pfhrp2-deleted parasites in humans 30 d previously, 
which accounts for the lags of human exposure, parasite gametocy-
togenesis and sporozoite development in mosquitoes. After a short 
latent period, infected individuals either develop clinical symptomatic 
disease (probability determined by their level of blood-stage immunity, 
with immunity increasing with age and exposure) or progress as an 
asymptomatic infection. Symptomatic individuals may seek treat-
ment and they are assumed to be successfully treated unless they are 
infected with only pfhrp2-deleted parasites and the decision to treat is 
determined only by a positive HRP2-based RDT. All other possible out-
comes from an individual seeking treatment (nonadherence to negative 
RDT outcome, positive HRP2-based RDT due to crossreactivity with 
HRP3 epitopes, microscopy or alternative RDT (not exclusively reliant 
on HRP2), used for diagnosis or the individual being treated without 
being tested) result in the individual being successfully treated. Once 
treated, individuals undergo a prophylactic period before returning 
to susceptibility. Asymptomatically infected individuals recover more 
slowly, with detectability influenced by immunity levels. Superinfection 
is incorporated, with asymptomatically infected individuals exposed 
at the same rate as susceptible individuals. Acquired strains from 
previous infection are naturally cleared after a period similar to the 
duration of an asymptomatic infection that has not been extended 
due to superinfection. All infected states are infectious to mosquitoes, 
with infectivity dependent on detectability (serving as a surrogate 
for asexual parasite density). Mosquitoes become infected at a rate 
dependent on human population infectivity and become infectious 
after approximately 10 d, reflecting the extrinsic incubation period. 
The model has been parameterized by fitting it to data on the inter-
relationship of entomological inoculation rate, parasite prevalence, 
clinical disease incidence and severe disease incidence. The model has 
also been shown to accurately capture the selection and relationship 
between pfhrp2 deletion frequency and transmission intensity in the 
DRC17 and later used to explain seasonal patterns in the detection of 
pfhrp2 deletions34. Full mathematical details are available in ref. 17.

Pfhrp3 dynamics. In a previous modeling analysis, we assumed a 
fixed probability of 25% that an individual infected with parasites with 
only pfhrp2 deleted (that is, pfhrp3 present) would test positive by 
HRP2-based RDTs due to crossreactivity with HRP3 epitopes. To more 
accurately capture the role of pfhrp3, we conducted a scoping review of 
RDT performance on pfhrp2−/pfhrp3+ clinical infections to estimate the 
probability that a positive RDT would occur if pfhrp3 is present. Second, 
we noted that pfhrp3 deletions are frequently found at higher frequen-
cies than pfhrp2 deletions, despite the latter providing a greater advan-
tage than the former with regard to the ability to evade diagnosis by 
HRP2-based RDTs3. This observation reflects the mechanistic30 and soft 

selective processes that are hypothesized to result in the emergence of 
pfhrp3 deletions5. This observation is in contrast to the strong selective 
sweeps associated with pfhrp2 deletions due to RDT-based test and 
treatment that cause pfhrp2 deletions to be selected on both genetic 
backgrounds, but more strongly on a pfhrp3-deleted background5. 
Consequently, we continue to explicitly model only pfhrp2 deletions in 
our model and estimate the probability that a pfhrp2-deleted parasite 
has an intact pfhrp3 gene. If pfhrp3 is intact, the probability that an 
individual will yield a positive HRP2-based RDT is determined by the 
probability of HRP3 crossreacting, which is estimated later as part 
of a model-fitting exercise. In effect, we model the probability that 
an individual whose parasites have only pfhrp2 deletions would have 
circulating HRP3 due to intact pfhrp3 and that these yield a positive 
HRP2-based RDT due to crossreactivity with HRP3 epitopes.

To estimate the association or LD (between genes on different 
chromosomes) between pfhrp2 and pfhrp3 deletions, we used all data 
uploaded by February 2025 from the WHO Malaria Threat Maps3 data 
to calculate, per study, the total number of pfhrp2−/pfhrp3−, pfhrp2−/
pfhrp3+, pfhrp2+/pfhrp3− and pfhrp2+/pfhrp3+ samples. To mitigate 
against likely differences in assay sensitivity and specificity between 
surveys, we included in our analysis the surveys that also used an alter-
native diagnostic (microscopy or non-HRP2-based RDTs) and surveyed 
symptomatic patients. From the resultant 2 × 2 table, we calculated the 
normalized coefficient of LD, D′, given by:

D′ = D
Dmax

(1)

where D is the coefficient of LD and Dmax is the theoretical maximum 
difference between the observed and expected haplotype frequencies, 
given by:

Dmax = {
max{−pApB, −(1 − pA)(1 − pB)} whenD < 0

min{pA(1 − pB), (1 − pA)pB} whenD > 0
(2)

where pA and pB are the frequencies of pfhrp2 and pfhrp3 deletions, 
respectively. To estimate the likelihood that pfhrp2 deletions arise with-
out pfhrp3 deletions, we calculated the proportion of all pfhrp2-deleted 
infections without pfhrp3 deletions. For each continent, we fit a 
beta-binomial distribution (to account for overdispersion across stud-
ies) to the calculated study proportions, with the estimated mean used 
to represent the probability that pfhrp2 deletions would arise without 
pfhrp3 deletions. We also estimated the relationship between the 
proportion of pfhrp2 and pfhrp3 in samples and malaria prevalence 
(estimated using Malaria Atlas Project data35) using overdispersed 
binomial generalized linear models to describe the observed number 
of deletions in each survey and the number of samples tested.

Model parameters for modeling the selection of pfhrp2 
globally
Creation of database of model parameters associated with the 
strength of selection for pfhrp2/3 gene deletions. Based on previ-
ous modeling efforts, we identified a list of risk factors that impact 
the speed of selection of pfhrp2 deletions (Extended Data Table 1). 
We conducted an extensive literature and database review to source 
estimates for each of the risk factors at the first administrative unit 
(or national level if not available subnationally) for all countries with 
stable malaria transmission. We used a three-step process by which we 
arrived at estimates for each of the risk factors. In overview, in step 1, 
we undertook a scoping review to identify whether suitable primary 
databases for each risk factor were available. In step 2, we conducted 
a literature review to identify additional estimates to supplement or 
update the databases identified in step 1. In step 3, we assessed whether 
the estimates from steps 1 and 2 provided additional data or insight 
beyond those produced by previous mathematical modeling exercises 
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conducted by the Malaria Atlas Project as part of their commodities 
forecast modeling exercise21, before collating data sources to be used 
as inputs into the pfhrp2 transmission model (Supplementary Fig. 13). 
This decision was made because the Malaria Atlas Project commodities 
database provides estimates of the treatment cascade at a national level 
(Supplementary Fig. 14), largely produced using statistical models fit 
with the DHS, Malaria Indicator Surveys, country DHIS2 databases and 
the WHO World Malaria Report, alongside socioeconomic covariates 
sourced from the Institute for Health Metrics and Evaluation. Conse-
quently, we sought to identify first whether primary data existed that 
could be used, before relying on the commodity database estimates 
if primary data were insufficient.

In step 1, we conducted a scoping review of suitable databases 
already available for each of the factors, which have been collated 
by international organizations and entities such as the WHO Global 
Health Observatory (https://www.who.int/data/gho/data/themes/
topics/topic-details/GHO/malaria-testing-diagnosis), the Global Fund’s 
Price and Quality Reports25, the President’s Malaria Initiative RDT 
distribution data, ACTwatch project publications36 and DHS data. The 
databases identified were standardized at the subnational or national 
level where appropriate and those identified and how they were stand-
ardized for each risk factor are given in Supplementary Table 2.

In step 2, a literature review was conducted to identify additional 
sources to fill the gaps identified in the databases in step 1 for a number 
of the risk factors. We constructed relevant search queries for each risk 
factor (Supplementary Table 3), which were queried against PubMed. 
Publications were screened based on inclusion and exclusion criteria 
relevant for each risk factor (Supplementary Table 4), with the full text 
of identified publications screened and relevant data extracted for each 
risk factor (Supplementary Table 5). All studies from which data were 
extracted, as well as the identified target antigen(s) of all RDT listed 
in volume distribution data, are available in Supplementary Data 1.

Most of the databases that we identified for sourcing parameters 
in step 1 are the same as those used by the Malaria Atlas Project to 
inform their commodities forecast modeling exercise. With regard to 
adherence to RDT diagnostic test outcome, no primary database was 
identified and the only suitable data source was that estimated by the 
Malaria Atlas Project. From our literature review, we did not identify 
any studies since 2015 that passed inclusion criteria. With regard to 
RDT brand volume data, databases from the Global Fund’s Price and 
Quality Reports25 and the President’s Malaria Initiative37 provided RDT 
volume data for all countries in Africa with malaria except for Equatorial 
Guinea and Gabon. Although 25 additional studies passed inclusion 
criteria for the literature search regarding RDT brands, none of the 
studies included data on Equatorial Guinea and Gabon. In addition, 
the included studies provided reports on the brands of RDTs used as 
part of specific scientific investigations and did not necessarily reflect 
national RDT types used. Last, regarding the size of the private market, 
we identified 48 studies from 21 countries, of which 4 were from Asia. 
A range of different measures of the private versus public sector were 
observed (percentage RDT manufacturer sales to private versus public, 
surveys of treatment-seeking behavior, analysis of DHS Service Provi-
sion Assessment surveys). In addition, DHS data also provide reports 
on where treatment seeking was sought in a number of DHS survey 
rounds, which are the underlying data used by the Malaria Atlas Project 
for modeling test adherence.

Based on the limited primary data, we ultimately relied on the 
Malaria Atlas Project commodities database for most risk factors, 
because it provided consistent, nationally representative estimates 
that were not substantially improved on by additional primary or 
literature sources. Exceptions to this were made only where data 
were lacking (for example, RDT brand volumes to inform the propor-
tion of testing that uses HRP2-based RDT). The final inputs for the 
malaria transmission model and their parameter source are provided 
in Supplementary Table 6. We accounted for uncertainty in model 

parameters as follows: for estimates from the Malaria Atlas Project 
commodity dashboard, the 95% credible intervals estimated during 
creation of the dashboard22 were used for all-cause (private and pub-
lic) care seeking, microscopy use and test nonadherence. For malaria 
prevalence, we used the 95% CIs of slide prevalence in 2–10 year olds 
provided publicly by the Malaria Atlas Project35. No uncertainty was 
available and thus not considered for the proportions of RDT brands 
used that target only Pf-HRP2.

Refining estimates of fitness costs associated with pfhrp2 dele-
tions. One notable uncertainty for modeling pfhrp2-deleted parasites 
is whether deleted parasites suffer a fitness cost and how that fitness 
cost impacts the probability of deleted parasites being transmitted 
onward. Asexual fitness costs have been measured by conducting 
pairwise competition experiments in vitro, suggesting a fitness cost 
of 8.7% (relative fitness of 91.3%) for pfhrp2-deleted parasite strains 
and 11.3% (relative fitness of 88.7%) for strains with both pfhrp2 and 
pfhrp3 deletions20. These fitness costs were estimated by comparing the 
growth of pfhrp2 and/or pfhrp3 knocked-out strains against a common 
competitor strain. Consequently, the inferred fitness costs reflect the 
impact on asexual parasite growth in mixed infections. However, it is 
unknown whether these measured fitness costs translate to a reduction 
in onward infection (how we model parasite fitness costs). In addition, 
previous feeding assay studies have highlighted the importance of 
measuring the fitness of both asexual and sexual stages to fully char-
acterize the impact on population-level trends38.

To estimate the fitness costs associated with pfhrp2 deletions in 
our model, we used our transmission model to model the selection of 
pfhrp2 deletions in Eritrea and Ethiopia at each first administrative unit. 
We chose Eritrea and Ethiopia for this parameter estimation exercise 
because both countries contain at least three surveys collected over 
time and represent known ‘hot spots’ of pfhrp2/3 deletions in Africa 
that have also been shown to cause symptomatic infection. In addi-
tion, the surveys include data on pfhrp3 deletions, which allow for 
the probability that pfhrp2 deletions occur with pfhrp3 deletions to 
be estimated for each location (revealing that pfhrp2 deletions were 
rarely observed without pfhrp3 deletions). Djibouti was not included 
because, to date, there have been fewer than three surveys over time 
among known symptomatic patients.

We statistically compared the modeled frequency of pfhrp2 dele-
tions against representative pfhrp2 surveys from the WHO Malaria 
Threat Maps to jointly infer parameter values for both the comparative 
fitness costs and the crossreactivity of HRP3 epitopes. We used a Bayes-
ian approach, with a flat prior for the fitness cost, with bounds centered 
on the fitness cost estimated in the in vitro fitness study20 (relative fit-
ness parameter bound between 0.8 and 0.99) and a beta distribution 
(α = 13, β = 15) for the probability of HRP3 crossreacting informed. This 
prior was informed by studies of the performance of HRP2-based RDTs 
on pfhrp2−/pfhrp3+ samples in Ethiopia, which observed 46.2% (12 of 26) 
of samples yielding a positive RDT5. Although other studies in Djibouti14 
and Uganda39 reported lower crossreactivity (0 of 5 and 1 of 10 samples 
crossreacting, respectively), we chose a prior based on the Ethiopian 
study, given the location of the pfhrp2 surveys to which we are fitting 
in Eritrea and Ethiopia and because no data were available in Eritrea 
due to previous studies either only observing pfhrp2−/pfhrp3− samples 
or not testing pfhrp2−/pfhrp3+ samples with RDT. The log(likelihood) 
values were calculated for each study by assuming that the proportion 
of pfhrp2 deletions was described by an overdispersed binomial distri-
bution, with the number of samples genotyped in each study used as 
the number of trials. Median estimates and 95% CIs for each parameter 
were obtained from 1,000 draws from the posterior parameter space.

Pfhrp2 deletion risk scores
In our previous analysis, we created risk scores of ‘HRP2 concern’. 
To create these scores, we simulated trends in the prevalence of 
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pfhrp2-deleted mutants across SSA. These simulations included esti-
mates of the mean, microscopy-based, P. falciparum prevalence in 2–10 
year olds (PfPR2–10) in 2010 by the first administrative unit and estimates 
of the proportion of cases seeking treatment from previously modeled 
estimates using the DHS and the Malaria Indicator Cluster Surveys40. 
The time taken for the proportion of infections with all strains pfhrp2 
deleted to reach 20% was recorded and classified to map areas of HRP2 
concern under four qualitative classifications. This approach relied, 
however, on a different metric (namely the proportion of infections 
with all strains pfhrp2 deleted) to the 5% false-negative RDTs due to the 
pfhrp2 deletion metric subsequently adopted by the WHO for deciding 
when to switch RDTs24. This metric is based on the proportion of clini-
cally relevant infections that would be misdiagnosed due to pfhrp2/3 
gene deletions. To address this discrepancy, we produced maps of 
two new risk scores—the ‘innate risk’ score and the ‘prospective risk’ 
score—based on the proportion of clinically relevant infections that 
would be misdiagnosed due to pfhrp2/3 gene deletions. To create these 
new maps, we used updated estimates from 2020 for the parameters 
described in Extended Data Table 1 and assumed that these estimates 
remain constant going forward, that is, malaria transmission inten-
sity, treatment-seeking data and RDT usage data remain the same as 
estimated in 2020.

Innate risk score. The first risk score, the innate risk score, is the 
innate potential for pfhrp2 deletions to spread once established in 
a region based solely on the region’s malaria transmission intensity, 
treatment-seeking data and adherence to diagnostic test outcome. 
Informed by the current 5% WHO threshold, we defined the innate risk 
score as the time taken for the percentage of clinical cases to be misdi-
agnosed by Pf-HRP2-based RDTs to increase from 1% (previously shown 
to be a suitable threshold for defining establishment of P. falciparum 
genetic traits under positive selection26) to 5%. We then used a similar 
approach to ref. 17 to categorize each region’s innate risk score. Here a 
region’s risk is classified as high, moderate or slight, defined as reaching 
the 5% threshold within 6, 12 and 20 years, respectively, or marginal risk 
if 5% is not reached within 20 years. Importantly, we did not incorpo-
rate data on the current types of RDT used in that country (these were 
used in the prospective risk score). Consequently, the innate risk score 
reflects the risk that deletions would spread in a region if all types of 
RDTs used were HRP2 based. Although most countries continue to use 
only HRP2-based RDTs, a number of countries in SSA have switched to 
non-HRP2-based RDTs: Eritrea, Djibouti and partially Ethiopia. In these 
countries, the innate risk score thus conveys the risk that is still posed 
if those countries reverted back to only HRP2-based RDTs.

To estimate the innate risk score for each administrative level 1 
region, we first estimated the selection coefficient (the annual percent-
age change in logit genotype frequency41) for clinical cases to be misdi-
agnosed by Pf-HRP2-based RDTs. We estimated selection coefficients 
using the following approach: we first created 8,748 unique parameter 
sets that equally span the range observed globally for six model simula-
tion parameters that capture the drivers of pfhrp2/3 deletions detailed 
in Extended Data Table 1: (1) the malaria prevalence; (2) the probability 
of an individual seeking treatment and being effectively treated after 
having received a diagnostic test (capturing treatment-seeking rates 
for fever, proportion of these occurring in the private sector, propor-
tion of individuals seeking care who receive a diagnostic test, the type 
of RDT used); (3) the adherence to test outcomes for deciding on treat-
ment; (4) the proportion of all diagnoses that occur using microscopy; 
(5) the relative fitness of pfhrp2-deleted parasites; and (6) the prob-
ability that an individual infected with only pfhrp2-deleted parasites 
yields a positive HRP2-based RDT due to the parasites not having a 
pfhrp3 deletion and the resultant HRP3 crossreacting with the RDT, 
yielding a positive test.

For all parameter combinations, 5 stochastic realizations of 
100,000 individuals were simulated for 40 years to reach equilibrium 

first before simulating the selection of pfhrp2 deletions over the next 
20 years, with a starting frequency of pfhrp2 deletions of 6%. The 6% 
was chosen based on recommendations made by a previous modeling 
study41, which recommends selecting an allele frequency as low as pos-
sible to reflect the condition under which most selection occurs, but 
also high enough to reduce stochastic noise in allele spread and allow 
for more accurate estimation of selection coefficients from modeling 
outputs. From each simulation, we recorded the monthly proportion 
of clinically relevant infections that would be misdiagnosed due to 
pfhrp2/3 gene deletions (that is, clinical infections only infected with 
pfhrp2 deletions and not yielding a positive test due to HRP3). We 
subsequently calculated selection coefficients (the annual percentage 
change in proportion of misdiagnosed clinical cases) for each simula-
tion repetition by linear regression of the log(odds) of a clinical case 
being misdiagnosed (Supplementary Fig. 15)42,43.

We next trained an ensemble machine learning model (for full 
details, see ‘Ensemble machine learning model for predicting selec-
tion coefficients’) to predict selection coefficients based on model 
simulation parameters detailed in Extended Data Table 1. This approach 
provides a statistical model that replicates the underlying transmission 
model behavior that can be subsequently generalized to any transmis-
sion setting. From these models, we predicted how quickly the 5% 
threshold will be reached once pfhrp2 deletions have been established 
in a region (defined as 1% frequency based on previous antimalarial 
resistance modeling exercises26). Uncertainty in selection coefficients 
due to stochastic variation in model simulations was also estimated 
using a similar statistical modeling framework.

Prospective risk score. The innate risk score, while capturing the 
underlying selection dynamics, does not incorporate data on the cur-
rent distribution of pfhrp2/3 deletions in Africa. The second risk score, 
which we called the prospective risk score, is calculated from a pro-
spective modeling approach designed to explore different scenarios 
of how pfhrp2 deletions may continue to spread in Africa, based on 
current estimates of the prevalence of pfhrp2 deletions from the WHO 
Malaria Threat Maps. Although there are considerable uncertainties 
in the prevalence of gene deletions across Africa7 and identifying the 
true denominator in reported surveys is challenging3, these estimates 
represent our best understanding of the current genotype frequency of 
pfhrp2 deletions in Africa. In countries without molecular surveillance 
data, we assumed the current frequency of pfhrp2 deletions to be 0%.

Given the difficulty in estimating the rate at which malaria para-
sites under selection spread geographically44, we used a simple model 
of parasite movement to describe how pfhrp2/3 deletions spread 
between the first administrative units. To simulate the spread between 
regions, we made the simplifying assumption that pfhrp2 deletions are 
exported from an admin level 1 region once pfhrp2 deletions have been 
found in 25% of clinical cases; when this threshold has been reached, 
pfhrp2-deleted parasites are seeded into neighboring regions such 
that neighboring regions reach 1% genotype frequency after 1 year. 
Once a region reaches a 1% genotype frequency, the future trajectory 
of deletions in that region is solely determined by the selection coef-
ficient estimated for the region for a given parameter set. Given the 
use of a single fixed selection coefficient for each region, this assumes 
that malaria prevalence and case management in each region remain 
constant over time. Using this approach, we simulated a range of pos-
sible timelines for pfhrp2 deletions in Africa.

Ensemble machine learning model for predicting selection coef-
ficients. From our simulations previously described, we produced a 
dataset of selection coefficients calculated using simulation outputs 
corresponding to 5 stochastic realizations for each of the 8,748 unique 
sets of the 6 model simulation parameters that capture the drivers 
detailed in Extended Data Table 1. We used the generated dataset to 
train an ensemble statistical model to predict selection coefficients 
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based on these six parameters described. Of the simulated datasets 
25% were held back as an out-of-sample dataset to be used for evaluat-
ing the performance of the trained statistical models and to test for 
overfitting. The remaining 75% of the simulated data was used for 
training 3 different statistical models (shape-constrained additive 
models, bagged multivariate regression splines and Bayesian regu-
larized neural networks) to predict selection coefficients using the 
six varied transmission model parameters. Statistical model perfor-
mance was evaluated based on the root mean-squared error (RMSE). 
Optimum model-fitting hyperparameters based on RMSE were first 
identified by scanning over hyperparameters for each model before 
fitting each model. When identifying hyperparameters and training 
the final model, K-fold crossvalidation sets were produced by splitting 
the training data into 20 sets of training data with the results of the 
crossvalidation subsequently averaged to reduce any bias from the 
crossvalidation set chosen. We calculated the performance of each 
trained model by calculating the RMSE for each model when tested 
using the holdout dataset. To construct our final ensemble model, 
we simply calculated the average across the three models, weighted 
by their RMSE from the holdout test.

Uncertainty in selection coefficients due to stochastic variation in 
model simulations was also estimated using a similar statistical mod-
eling framework (75% data split, hyperparameter tuning and 20-fold 
crossvalidation). For each parameter set, we used each trained model to 
first predict the selection coefficient. Next, we calculated the absolute 
prediction error by comparing the model prediction against the selec-
tion coefficient for each stochastic realization, before calculating the 
s.d. in the error across stochastic realizations. We trained a Bayesian 
regularized neural network model to predict the s.d. in error before 
calculating robust CIs given by ±1.96 × s.d.

We used the weighted average ensemble model to predict 
selection coefficients for each first administrative unit based on the 
malaria prevalence and treatment-related data for the administra-
tive unit. A complete schematic of this modeling pipeline is given in 
Extended Data Fig. 1.
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Data availability
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DeletionRiskExplorer are available via GitHub at https://github.com/
rjzupkoii/WHO-Malaria-pfhrp23 (v.0.1.2). All data used in and generated 
by this analysis are available in a reproducible and version-controlled 
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Code availability
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Extended Data Table 1 | Drivers of pfhrp2/3 deletion selection included in mathematical modelling

Drivers of pfhrp2/3 selection Impact on speed of selection for pfhrp2/3 deletions Data sources used

Malaria Prevalence Lower malaria prevalence will increase selection pressure 
by increasing the probability that individuals are only 
infected with pfhrp2/3 deleted parasites and thus more 
likely to not be treated. Additionally, lower malaria 
prevalence will increase the probability that an infected 
individual will develop a symptomatic infection (due to 
lower immunity at lower transmission intersities), which in 
turn influences the infected individual’s likelihood to seek 
treatment.

Malaria Atlas Project maps of slide positivity  
ages 2–1035.

Microscopy-based diagnosis The use of microscopy for malaria diagnosis will decrease 
selection pressure by negating the selective advantage 
conferred by pfhrp2/3 deletions.

WHO World Malaria Report ‘proportion of cases 
confirmed by diagnostic’ table, with missing data 
imputed using all other collected model parameters.

Treatment-seeking rate for fever Increased treatment-seeking will increase the rate at which 
the selective advantage conferred by pfhrp2/3 is able to be 
realised by evading diagnosis and treatment.

Commodities Forecast Dashboard by the Malaria 
Atlas Project21, which uses Demographic and Health 
Surveys (DHS), Malaria Indicator Surveys (MIS), 
Multiple Indicator Cluster Surveys (MICS) and AIDS 
Indicator Surveys (AIS) in generalized additive mixed 
model (GAMM) to predict treatment seeking patterns 
over time.

Proportion of treatment-seeking for fever 
in the private sector.

Low use of malaria rapid diagnostic tests has been shown 
to exist in the private market in a number of locations46. If 
the use of RDTs is lower in the private market than in the 
public sector then selection pressure will decrease with an 
increasingly large private drug market.

DHS/MIS Surveys used in GAMM for estimating 
treatment seeking from any (medical) source and for 
estimating treatment seeking in the public sector.

Proportion of individuals seeking care 
who receive diagnostic test

Low use of any diagnostic test for guiding treatment 
decisions will reduce selection pressure for pfhrp2/3 
deletions.

DHS data (surveys in Africa asking if care-seeking 
febrile children received a finger/heel prick).

Nonadherence to RDT outcomes Nonadherence to RDT outcomes (treating RDT negative 
individuals) will decrease selection pressure by negating  
the selective advantage conferred by pfhrp2/3 deletions.

Commodities Forecast Dashboard by the Malaria 
Atlas Project21, which uses a statistical model of 
the probability of care-seeking fevers receiving any 
antimalarial informed by DHS and MIS data.

RDT brands The use of non-HRP2-based RDTs will negate the selective 
advantage conferred by pfhrp2/3 deletions.

Global Fund Price and Quality Reporting and 
President’s Malaria Initiative data on volumes of RDT 
test types and brands used.

Cross-reactivity of PfHRP3 epitopes Increasing cross-reactivity between PfHRP3 epitopes and 
PfHRP2-based RDTs will decrease selection pressure for 
pfhrp2 deletions.

Estimate based upon WHO Malaria Threat Maps data 
and studies reporting performance of HRP2-based 
RDTs on pfhrp2-/pfhrp3 + (5,14,39).

Fitness costs associated with pfhrp2/3 
gene deletions.

Fitness costs associated with pfhrp2/3 gene deletions will 
reduce the transmissibility of gene deleted parasites.

Parameterised via model fitting to Eritrean and 
Ethiopian pfhrp2/3 deletion data, with priors from 
in vitro competition assay data20.

Each row corresponds to a distinct driver, with the theoretical or observed impact of each driver explained. The final column describes the different data sources and methodologies used 
to estimate values for each driver that are used as parameters in this modelling study. Parameter values for each driver were sourced at the national level, except for malaria prevalence and 
treatment-seeking rates, which were sourced at the first administrative unit. See Supplementary Information for full methodology.
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Extended Data Fig. 1 | Workflow schematic for modelling and mapping the 
global risk of selection and spread of pfhrp2/3 deletions. a) Estimation of 
selection coefficients from stochastic model simulations. b) Generating training 
data using simulation studies that feed into c) a statistical model for estimating 

selection coefficients. d) The final model is used to estimate the risk posed by 
pfhrp2/3 deletions using collated subnational covariates and parameters from 
model fitting exercises.
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