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Since their first detection in 2010, Plasmodium falciparum malaria parasites
lacking the P. falciparum histidine-rich protein 2 gene (pfhrp2) have been
observed in 40 of 47 surveyed countries, as documented by the World
Health Organization. These genetic deletions reduce detection by the
most widely used rapid diagnostic tests, prompting three countries to
switch to alternative diagnostics. However, manufacturing of alternative
rapid diagnostic tests has not been scaled up and there are no World
Health Organization-prequalified combination tests that use P.falciparum
Plasmodium lactate dehydrogenase. The continuing spread of pfhrp2
and/or pfhrp3 (pfhrp2/3) deletions threatens malaria control, creating
anemerging public health crisis. Here we use mathematical modeling
informed by current pfhrp2/3 deletion prevalence and aliterature review
to assess the global risk of pfhrp2/3 deletions. We identify ten priority
countries for surveillance and predict that the primary spread in Africa
will move southward from the Horn of Africa through East Africa within

20 years. Despite variation in modeled timelines due to uncertainty in
model parameters, four countries yet to switch rapid diagnostic tests are
consistently classified as high risk under arange of model assumptions.
This updated model offers refined predictions to guide pfhrp2/3 policy and
prioritize future surveillance efforts and innovation.

The expanded use of malariarapid diagnostic tests (RDTs) in the last
20 years has been central to global malaria control efforts to test, treat
and track all malaria infections, with 262 million RDTs distributed in
2021by national malaria programs and 413 million sold by World Health
Organization (WHO)-prequalified manufacturers’. TheRDTs commonly
deployed for diagnosis of falciparum malaria detect Plasmodium falci-
parum histidine-rich protein 2 (Pf-HRP2) and its paralog P.falciparum
histidine-rich protein 3 (PfHRP3). However, progress against malaria

isnow threatened by anincrease in pfhrp2 and/or pfhrp3 (henceforth
termed pfhrp2/3) gene deletions resulting in false-negative RDT results.
In2014, areview was conducted that called for aharmonized approach
toinvestigate and report pfhirp2/3gene deletions’. As 0f 2023, the WHO
Malaria Threat Maps included reports of pfhrp2/3 deletions in 40 of
47 countries surveyed worldwide® and reports of pfhrp2 deletions
causing false-negative rates have been as high as 80% in the worst
affected settings®. Once detected, there are concerns that pfhrp2/3
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deletions may be rapidly selected for, as demonstrated by observa-
tionsin Eritreaand Ethiopia*’. There are alternative, non-HRP2-based
RDTs that target alternative antigens such as Plasmodium lactate dehy-
drogenase (pLDH). Pan-specific pLDH RDTs have not, however, been
brought to scale because of their lower sensitivity compared to HRP2
and, for countries that need to both detect and distinguish between
P.falciparum (Pf) and P. vivax, there are no WHO-prequalified combi-
nation tests that use Pf-pLDH instead of or in addition to HRP2 for P.
falciparum detection. This has posed particular challenges because
pfhrp2/3 deletions have emerged and become dominant in several
countries that require this type of combination product, forexample,
Eritrea, Ethiopia, Djibouti, Peru and Brazil. Most other countries con-
tinuetorely on Pf-HRP2-based RDTs as their primary malaria diagnostic
tool, soemergence and spread of pfhrp2/3-deleted strains represents a
growing public health crisis and poses amajor obstacle to the control
and eradication of P falciparum.

Accurate maps of pfhrp2/3-deleted strains and their impact on
HRP2-RDT results are needed to understand the current risk to malaria
control but also to parameterize the risk of future spread. Multiple
molecular surveys have been undertaken to characterize the current
spread and estimated prevalence of parasites with pfhrp2/3 deletions
(genotype frequency of pfhrp2/3 deletions). However, accurately
estimating the true frequency of pfhrp2/3 deletions, their impact on
HRP2-RDT results and the risk that they pose to malaria controlis chal-
lenging. One challenge is the need to harmonize estimates of pfhrp2/3
deletions across studies with different sampling and laboratory-testing
schemes, which prompted the WHO to publish methodological guid-
anceand protocols in 2018 for studying pfhrp2/3 deletions®. However, a
review of published surveys’ concluded that unrepresentative surveys
(sampled population not representative of the whole population,
for example, sampling only from severe malaria cases or sampling
HIV-positive individuals) and inconsistent study design have impaired
efforts to evaluate the risk of P, falciparum malaria cases being misdi-
agnosed due to pfhrp2/3 deletions. In addition, more recent surveys
with newer laboratory techniques for detecting pfhrp2/3 deletions
have detected lower frequencies of pfhrp2/3 deletions® than previous
surveys’.Second, evidence suggested that there are differencesinthe
phenotypes associated with deleted parasites between geographical
regions. For example, in the Democratic Republic of Congo (DRC), a
high level of deletions (6.4%, 95% confidence interval (CI) 5.1-8.0%)
was found when using asymptomatic samples from the Demographic
and Health Surveys (DHS)"°. However, a subsequent study in symp-
tomatic patients using improved laboratory methods in the same
regions found no symptomatic malaria cases with pfhrp2 deletions.
In contrast, Eritrea*'*and Djibouti'>'"* are affected by a high frequency
of pfhrp2/3-deleted parasites that cause symptomatic and clinically
relevant infections. Furthermore, in Peru, deleted parasites emerged
in settings that have never relied on HRP2-based RDTs for diagnosis,
prompting speculation that deletions offer an as yet undefined selec-
tive advantage in this context beyond evasion of diagnosis®. These
distinct phenotypes imply differentimmediate risks to malaria control
and suggest that different evolutionary pressures are driving hetero-
geneous spread of pfhrp2/3 deletions across regions'.

In 2017, an individual-based mathematical model of malaria
transmission characterizing the drivers of selection for pfhrp2 dele-
tions was developed, identifying malaria transmission intensity and
treatment-seeking rates for malariainfectionasthe twolargest drivers
of pfhrp2/3 deletions”. However, there were insufficient data to com-
prehensively account for other risk factors (Extended Data Table 1),
such as the impact of pfhrp2 gene deletions on parasite fitness and
the different mechanisms of selection driving the distinct spread
between pfhrp2 and pfhrp3 deletions. In addition, limited data were
available to parameterize the proportion of malaria cases diagnosed
by microscopy, the level of adherence to RDT-based treatment, the
crossreactivity of HRP3 epitopes toyield a positive HRP2-RDT and the

incidence of nonmalarial febrileillness—all factors expected to impact
the selective advantage of pfhrp2 deletions. However, new studies and
data provide improved insight into these processes. For example,
HRP3 crossreactivity has been shown to be higher than previously
thought, with HRP3 crossreactivity on HRP2-based RDTs sufficient
to mask the effects of pfhrp2 deletions in in vitro cultures with a high
parasite density'®. However, crossreactivity will differ between brands
depending on the target epitopes of the antibodies bound to the test
strips” and target field data from patients in Ethiopia who are malaria
symptomatic showed different performance with 46% (12 of 26) of
pfhrp2 /3" samples yielding a positive HRP2-based RDT°. With regard
tothe evolutionary mechanism driving pfhrp2/3selection, population
geneticanalyses conductedin Ethiopia concluded that pfhrp3 deletion
hasarisenindependently multiple times, whereas pfhrp2 deletion likely
arose morerecently due to the strong positive selection resulting from
an HRP2-RDT-based test-and-treat policy’. Understanding how strongly
pfhrp2deletionis linked to pfhrp3 deletionis critical—if these two dele-
tions co-occur more than would be expected by chance (analogousto
positive linkage disequilibrium (LD) but between genes on different
chromosomes), the benefits for RDT performance conferred by HRP3
crossreactivity will be negated. Last, in vitro competition assays of
asexual parasite fitness suggest that up to a90%relative fitness (a10%
loss in replicative rate) may be associated with pfhrp2 deletions®,
although no in vivo or feeding assay studies have been conducted to
assess fitness costs throughout the parasite life cycle.

Inthis study, we incorporated recent advancesin our understand-
ing of pfhrp2/3 deletions and new datarelevant to their spread to pro-
videaglobal assessment of the risk posed by pfhrp2/3-deleted parasite
strains. Specifically, we used a mathematical model of malaria trans-
mission and selection of pfairp2 deletions to evaluate the susceptibility
of each malaria-endemic region to select for pfhrp2 deletions, once
deleted parasites become established inthat region. Last, we predicted
the continued spread of pfhrp2 deletions globally with a focus on
sub-Saharan Africa (SSA) based on best estimates of the prevalence of
pfhrp2 deletions. The resultant maps of the risk that pfhrp2 deletions
pose canbe used to guide ongoing surveillance efforts, future deploy-
ment of alternative RDTs and research to improve our understanding
of the biology and threat of pfhrp2/3 deletions.

Results

Fitness and crossreactivity estimation for pfhrp2 and pfhrp3
To estimate therisk posed by pfhrp2/3 deletions, we first estimated the
probability of pfhrp3 deletions co-occurring with pfhrp2 deletions and
the fitness costs associated with pfhrp2 deletions based ondatain the
Horn of Africa. Using survey data reporting the prevalence of pfhrp2
and pfhrp3deletions from the WHO Malaria Threat Maps database®, we
estimated that, globally, 61.7% (95% Cl 55.3-67.8%) of pfhrp2-deleted
samplesalso had pfhirp3gene deletions. The distribution across studies
of the percentage of pfhrp2-deleted samples with pfhrp3 gene deletions
was highly overdispersed, with clear differences between countries.
Focusing on studies conducted in Africa (Fig. 1), we estimated that
52.1% (95% Cl1 42.9-60.9%) of pfhrp2-deleted samples also had pfhrp3
gene deletions (Fig.1a). We observed significant nonrandom associa-
tion (x*=1,747.9, degrees of freedom =1, P< 2.2 x10™) based on the
observed counts of pfhrp2- and pfhrp3-deleted parasites (Table 1). A
further strong indication of the positive linkage between pfhrp2 and
pfhrp3 deletions was observed based on the normalized coefficient
of LD (= 0.557).

We found a significant negative relationship between malaria
prevalence and pfhrp3 gene deletion prevalence among pfhrp2-deleted
samples with a log(odds ratio) (log(OR)) of —-0.3017 (95% CI -0.3340
t0-0.2695, P <2.2 x107'®) (Supplementary Table 1), with surveys con-
ductedinregions with higher malaria prevalence lesslikely to observe
pfhrp2-deleted samples among samples with pfhrp3 deletions (Fig. 1b).
We also observed significantly lower frequencies of pfirp3 deletionsin
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Fig. 1| Distribution and independence of pfhrp2/3 deletions in Africaamong
surveys of symptomatic individuals collated from the WHO Malaria Threat
Maps database. a, Percentage of pfhrp2-deleted samples together with pfhrp3
deletions. The mean and 95% Cl are shown with points and ranges, with the
vertical dashed line indicating the continent-wide estimate based on a beta-
binomial model. The sample size per country is: Burkina Faso (32), Cameroon
(49), DRC (3), Djibouti (272), Eritrea (198), Ethiopia (195), Gabon (2), Ghana

(37), Equatorial Guinea (92), Kenya (29), Madagascar (1), Mozambique (201),
Nigeria (18), Senegal (3), Sierra Leone (2), South Sudan (85), Chad (10), Togo
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(1), Tanzania (25), Uganda (73) and Zambia (12). b, Relationship between the
percentage of pfhrp2-deleted samples with pfhrp3 deletions and malaria slide
prevalencein 2-10 year olds based on the Malaria Atlas Project estimates. c,
Relationship between the percentage of samples with pfhrp3 deletions and
malaria prevalence. In all plots, the point size represents the number of samples
from each survey used to derive estimates. Inb and ¢, an overdispersed binomial
regression model fit (blue) shows the mean relationship, with the 95% Cl of the
regression fit shown with shaded bands. Data is the from WHO Malaria Threat
Maps database’.

surveys conducted in regions with higher malaria prevalence (Fig. 1c).
A different relationship between pfhrp2/3independence and malaria
prevalence was observed on the other continents; studies in Asia
showed insignificant associations between pfhrp3-deletion frequency
and malaria prevalence (Supplementary Fig.1).

Using longitudinal data on pfhrp2/3 deletions from Eritrea and
Ethiopia, we fit our malaria transmission model to jointly infer param-
eter values for both the fitness costs of pfhrp2 deletions and the cross-
reactivity of HRP3 epitopes. We estimated relative fitness of 96.4% (95%
C195.3-97.3%) for pfhrp2 deletions (thatis, the relative contribution of
deleted parasites to onward infections each day = 96.4% of that from
wild-type parasites). From the results of the same model fitting, we
estimated the probability that aninfection due to only pfhrp2-deleted
parasites would still produce a positive HRP2-based RDT (HRP3 crossre-
activity producingapositive test outcome) of 25.0% (95% C114.0-41.0%)
(Supplementary Fig. 2).

Modeling the impact of drivers of selection for pfhrp2
deletions

To fully evaluate the risk of selection for pfhrp2/3 deletions, we con-
ducted aliterature review to identify and extract estimates for addi-
tional known drivers of pfhrp2/3 selection (Extended Data Table 1).
We found parameter estimates for most of the risk factors identified;
however, sources from reported WHO national data or the academic
literature failed to identify suitable estimates for all malaria-endemic
countries. To address this, we identified previous efforts by other

Table 1| Frequency of pfhrp2/3 deletions in Africa

pfhrp3 deleted pfhrp3 wild-type Total
pfhrp2 deleted 595 851 1,446
pfhrp2 wild-type 392 7736 8,128
Total 987 8,587 9,574

The table shows the total number of samples categorized by pfhrp2/3 gene deletion from
studies available in the WHO Malaria Threat Maps database®.

groups that produced modeled parameter estimates at either the
national or the first administrative unit, notably the Commodities
Forecast Dashboard by the Malaria Atlas Project”. When compared
againstour literature review, we found broad agreement in the data
sources identified (Supplementary Information), which resulted
in similar estimates as produced by the Malaria Atlas Project for
modeling trends in malariacommodities®”. However, we identified a
number of outliers, totaling <0.5% of all parameters collected. These
included outliers that reflected gaps in nationally reported data,
for example, zero reported cases to the WHO of malaria tested by
RDT and edge cases, such as ~-100% of individuals with care-seeking
malaria infections, who are not tested, receiving treatment. In
response, outliers were identified and multiple imputations using
random Forest plots were used to correct outliers based on the
other collected covariates, yielding global maps of each parameter
(Supplementary Figs. 3-6).
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Fig.2|Global distribution of predicted times in years for the percentage of
clinically relevantinfections misdiagnosed due to pfhrp2/3 gene deletions to
increase from1% to 5%. Regions estimated not to reach 5% within 40 years are
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showninblue. Regions with very low, unstable malaria transmission (defined as
<0.05% malariaslide prevalence in 2-10 year olds) are shown with diagonal gray
lines (see Supplementary Fig. 9 for focus on Africa). PfPR, P.falciparum prevalence.

Using our model of malaria transmission, we conducted 43,740
simulations across the full range of parameters identified for each
country. We trained an ensemble machine learning model to accu-
rately predict selection coefficients based on these simulations
(Supplementary Fig. 7). Based on the partial dependence of the
ensemble statistical model, we identified malaria prevalence as the
most important determinant of the selection of pfhrp2 deletions
(Supplementary Fig. 8), with selection of pfhrp2 deletions notably
increasing at malaria prevalence <20% based on microscopy slide
prevalence in 2-10 year olds (Supplementary Fig. 8a). Treatment
cascade parameters (nonadherence to RDT test outcomes, use of
non-HRP2-based RDTs for testing and the HRP3 crossreactivity)
had similar inferred effect sizes on the selection of pfhrp2 deletion
(Supplementary Fig. 8c-f), reflecting their similar role in altering the
probability that anindividual is treated based only on the outcome of
an HRP2-based RDT.

Mapping the risk posed by pfhrp2 deletions
We quantified the risk posed by pfhrp2/3 deletions using two
approaches:the ‘innaterisk’and ‘prospective risk’. First, we estimated
the ‘innaterisk’, defined as the time taken for the percentage of clinical
cases tobe misdiagnosed by Pf-HRP2-based RDTs to increase from1%to
5% (WHO threshold to switch tonon-HRP2-based RDTs) in each region,
if using only HRP2-based RDTs. The innate risk captures the innate
susceptibility of each region to select for deletions once established.
We predicted that 73 of 106 countries modeled would have at least 1
firstadministrative unit reach the 5% threshold within 20 years (Fig. 2).
We predicted that most of the highest-risk regions are very low trans-
mission regions (<0.05% malaria prevalence); however, evolutionary
trajectoriesinthese settings are highly uncertain. The very low malaria
prevalence, and consequently the small effective population size, is
predicted toincrease the stochasticity in the dynamics of pfhrp2 dele-
tions—similar to classic findings of the relationship between genetic
driftand selection®. Consequently, thereis also the increased chance
that deleted strains will stochastically fade out due to small malaria
populationsize, rather thanincreasing despite conditions being favora-
ble for the selective advantage conferred by pfhrp2 deletions to be
realized. Conversely, we predicted a low risk of pfhrp2 deletions in
the highest malaria prevalence regions in Central and Western Africa,
with estimated times to reach the 5% threshold in excess of 40 years.
Focusing on countries with >0.05% estimated malariaslide preva-
lence in 2020, we identified 20 countries in which most of the first
administrative units were classified as high innate risk (reaching the 5%
threshold within 6 years) (Table 2). All but three countries (Solomon
Islands, PapuaNew Guinea and Guyana) are in Africa, with most of these
countries in Africa representing those in which pfhrp2/3 deletions
have already been identified (for example, Djibouti, Eritrea, Ethiopia
and Gambia). Notably, afew regionsin Djibouti are predicted to havea

marginal risk, which reflects the recent increases in malaria transmis-
sionand contrasts with the previously lower malariaprevalencein these
regions, whichwould have increased selection for pfhrp2/3 deletions.
However, we found alarge range in assigned risk scores when we com-
paredrisk scores across the range of parameter uncertainties foreach
region (Fig. 3). Most of the uncertainty in selection speed for pfhrp2
deletions is due to wide uncertainties in malaria prevalence for each
first administrative unit. For example, malaria prevalence estimates
in Yobe, Nigeria for 2020 range between 10% and 40%, which corre-
spondsto an absolute change in selection coefficient of 0.3 (thatis, an
absolute increase of 30% in the annual proportional change in pfhrp2
deletions). This changein predicted selection coefficients would result
in a change in regional classification from marginal concern (1-5% in
>20 years) to high concern (1-5% in <6 years). Despite this uncertainty,
we identified a number of regions that are consistently classified as
high concern across the range of parameter uncertainties, such asin
Eritrea, Ethiopia, Zambia and Tanzania, and a number of regions in
Central and West Africa that are consistently classified as marginal
risk (1-5% in >20 years).

Althoughtheinnaterisk captures the underlying selection dynam-
ics,itdoesnotincorporate dataonthe current distribution of pfhrp2/3
deletionsin Africa. Consequently, we also estimated the ‘prospective
risk’, which s calculated using simulations of the continued spread of
pfhrp2 deletionsin Africa, based on current estimates of pfhrp2/3 dele-
tions from the WHO Malaria Threat Maps® and assuming that countries
maintain their existing RDT procurement and usage patterns. In Africa,
we predicted that 28 of the 49 countries modeled have at least one first
administrative unit predicted to reachthe 5% threshold or have already
reached the 5% threshold within 20 years (Fig. 4). If HRP2-based RDTs
remain the mainstay of malaria case management, we predicted that
the major route for pfhrp2 deletions is to spread south out from the
current hotspotinthe Horn of Africa, moving through East Africa over
the next 20 years. In addition, deletions identified in Western Africa
are predicted to increase, especially in Senegal and Mali. Prospec-
tive risk scores classified fewer regions as high risk than innate risk
scores (Supplementary Fig. 11). Across both risk scores, however, a
number of countries are predicted to be identified as being high risk
in the majority (>50% of first administrative units; Table 2), including
Djibouti, Eritrea, Ethiopia, Senegal, Zambia and Kenya. Similar to the
innate rsk score, there is considerable uncertainty in the modeled
timelines for the spread of deletions. Interactive risk maps for each
parameter scenario are available at https://worldhealthorg.shinyapps.
io/DeletionRiskExplorer (Supplementary Fig.12).

Discussion

In this study, we modeled the global risk of selection and spread of
pfhrp2 deletions and confirmed the threat they pose to malaria control
efforts in Africa if case management continues to rely on HRP2-based
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Table 2 | High-risk countries by risk score

Country Percentage of first administrative
units with high innate risk

Comoros 100.0

Eritrea 100.0

Ethiopia 100.0

Gambia 100.0

Guyana 100.0

Madagascar 100.0

Namibia 100.0

Papua New Guinea 100.0

Rwanda 100.0

Senegal 100.0

Tanzania 100.0

Zimbabwe 100.0

Solomon Islands 100.0

Kenya 93.6

Guinea-Bissau 88.9

Yemen 84.2

Guyana 80.0

Mauritania 66.7

Djibouti 60.0

Somalia 50.0

Zambia 50.0

Country Percentage of first administrative
regions with high prospective risk

Djibouti 100.0

Eritrea 100.0

Ethiopia 100.0

Senegal 100.0

South Sudan 100.0

Sudan 100.0

Kenya 95.7

Ghana 90.0

Equatorial Guinea 85.7

Zambia 60.0

The percentage of first administrative units classified as high innate or prospective risk

(>5% of clinically relevant infections misdiagnosed due to pfhrp2/3 gene deletions in <6years,
given a starting frequency of pfhrp2 deletions of 1%) is shown. Only countries in which

>50% regions are classified as high risk are shown. The data presented are derived from the
mathematical modeling detailed in Methods.

diagnosis. Incorporating the most recent understanding of deletions
and the best estimates of key model parameters, we found that malaria
prevalence was the mostimportant driver of deletions globally. How-
ever, uncertainty in malaria prevalence data, further exacerbated by
the pandemic-induced delay in key data sources such as the DHS, limits
confidence in regional risk estimates. In response, we investigated a
range of scenarios and uncertainties to identify countries and regions
at highest risk from deletions across the range of scenarios explored.
Globally, most malaria-endemic areas, and especially those with very
low prevalence, are predicted to select for deletions rapidly. In Africa,
thisincludes regionsinthe Horn of Africa, East Africaand a few coun-
tries in West Africa, such as Senegal and Mali.

Our findings contrasted with earlier pfhrp2 deletion risk maps
and timelines” in several notable ways. First, our approach focused

on a different outcome measure, namely the proportion of clinically
relevant malaria cases misdiagnosed due to gene deletions, consistent
with current WHO policy guidance®. Second, we incorporated the
best available data on current deletion prevalence to evaluate how
deletions may spread between regions and focused only on surveys of
symptomatic patients to ensure that our estimates of pfhrp2 and pfhrp3
deletions align with the criteria for the WHO 5% threshold. Third, we
produced an interactive tool for decision-makers to explore the risk
maps for each parameter scenario and understand how each parameter
impacts the selection of pfhrp2 deletions. However, despite incorporat-
ing current best estimates, these projections need to be viewed with
the appropriate uncertainty due to considerable gaps in surveillance
of pfhrp2/3 deletions, as well as heterogeneity in the quality and con-
sistency of previously conducted pfhrp2/3surveys’. Consequently, the
results should be viewed as tools to consider how the two components
for mapping the potential spread of deletions—a region’s innate sus-
ceptibility for deletions toincrease once established (dependentona
region’s malaria transmission intensity, treatment-seeking data and
RDT usage data) and the spatial connectivity to regions with high levels
of deletions—may interact todrive the spread of deletions. Despite their
simplicity, these results could help guide controlinterventions to stem
thethreat of pfhrp2/3 deletions, particularly inidentifying regions that
need tobe prioritized for surveillance to provide accurate data before
deciding whether to switch front-line RDTs. Outside regions that have
already switched front-line RDTs are countries including Senegal,
Zambia and Kenya.

Fewer regions areidentified as high risk based on the prospective
risk score compared to the innate risk score for two primary reasons.
First, the prospective risk scoreincorporates estimates of the propor-
tion of RDTs in use in a country that are not only HRP2 based. Conse-
quently, countries that primarily use non-HRP2-based RDTs, such as
Rwanda (primarily using Pf-RDTs and/or pan-RDTs based on the Global
Fund and President’s Malaria Initiative data”), will not select for pfhrp2
deletions. Second, the prospective risk score is seeded with current
estimates of pfhrp2 deletion prevalence in each country. Countries
withoutsurveys or<1% pfhrp2 deletions, such as Tanzania, are predicted
toreachthe 5% threshold slower thanin theinnaterisk scenario, which
explores timelines from a starting frequency of 1% pfhrp2 deletions.
We chose to produce two risk maps (the innate and prospective risks)
because robust molecular surveys of pfhrp2/3 deletions have not been
conducted across all regions. Although surveillance for pfhrp2/3 dele-
tions hasincreased rapidly since the widespread introduction of RDTs,
by the start of 2023 surveys had been conducted in only 22 countries
in Africa’. For the prospective risk score, we made the simplifying
assumption that countries without surveys have 0% pfhrp2 deletion
frequency. If this assumption is incorrect, the prospective risk score
willunderestimate the risk in these countries.

The innate risk score differs from the prospective risk score
by simply focusing on the risk that pfhrp2 deletions pose once pre-
sent in aregion (and assuming that the region has not switched to
non-HRP2-based RDTs alone or in combination with HRP2). Providing
both risk scores has several advantages. The innate risk score can be
used to confirm that the model correctly identifies regions in which
deletions have rapidly increased as high risk. Indeed, the maps of
innate risk (Fig. 3) correctly identify the Horn of Africa as a region of
consistently highrisk. The innaterisk score can alsobe used to address
additional questions relevant to malaria policies, including where to
prioritize surveillance given plateauing levels of funding and com-
peting demands'. For example, if deciding among countries without
previoussurveys, theinnaterisk score can be used to identify countries
predictedto select for deletions fastest and therefore in greatest need
of surveillance and/or early transition to non-HRP2-based RDTs. Last,
among countries that have switched away from HRP2-based RDTs, the
innaterisk score provides anindication of whether these regions would
still select for deletions if they switched back to HRP2-based RDTs.
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Worst case Central case

Fig. 3 |Innate risk score for the concern caused by pfhrp2 deletionsin Africa.
High (red), moderate (yellow) and slight (teal) risk representing >5% of clinically
relevant infections misdiagnosed due to pfhrp2/3 gene deletionsin <6,12 and

20 years, respectively, and marginal risk (blue) representing <5% in 20 years.
Uncertainty in model parameters for each regionimpacts the risk scores, with the
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worst-case (right), central-case (middle) and best-case (right) scenarios (based
on the uncertainty in the range of parameters explored) shown. Regions with very
low, unstable malaria transmission (defined as <0.05% slide prevalence in
2-10year olds (PfPR)) are shown with diagonal gray lines (see Supplementary
Fig.10 for global risk scores).
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Fig. 4 | Prospectiverisk scores for pfhrp2 deletions in Africa. a, The prospective
risk score modeling continued spread of deletions based on current best
estimates of the prevalence of pfhrp2 deletions as collated in the WHO Malaria
Threat Maps database (2023)°. b, ¢, In this model, assumptions that deletions
areimported into a region from a neighboring region once they have reached a
prevalence of 25% (b, 2024) and selection of deletions in aregion determined by
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thatregion’s transmission intensity and treatment-related parameters (c, 2025).
d-f, The predicted spread of false-negative RDTs due to pfhrp2/3deletionsin
Africaover the next 20 years: 2023 (d); 2033 (e); 2043 (f). The color bar shows the
percentage of clinically relevant infections misdiagnosed due to pfhrp2/3gene
deletions (Supplementary Video1).

Ourapproach has several important limitations. First, our explo-
ration of international spread employs a simplistic approach for
how deletions are exported between regions. Second, the model
parameters carry a high degree of uncertainty. Our estimates of
fitness costs are derived from model fitting to a handful of surveys
with large differences in the number of samples, which led to a high
prediction of the inferred fitness costs, suggesting smaller fitness
costs than observed from in vitro experiments?’. Therefore, they
may not reflect the fitness costs associated with pfhrp2 deletion
in parasites outside the Horn of Africa and we do not consider the
potential for new pfhrp2-deleted strains to emerge with increased
fitness. Once additional longitudinal deletion data are available,
selection coefficients can be more accurately inferred and fitness

costs should be estimated again. However, the degree of uncertainty
in certain key parameters, such as malaria prevalence, highlights
the need for datato provide more precise estimates of key drivers of
pfhrp2/3selection. These same data are needed to model the spread
of artemisinin partial resistance®, which is now spreading in a num-
ber of regions in Africa” . Third, our model assumes that malaria
prevalence and treatment will remain constantin the future. Fourth,
the country-specific estimates of linkage between pfhrp2 and pfhrp3
deletions provided here assume that the dynamics of these two loci
are at equilibrium and no selective forces are acting to pull certain
genotypes, such as deletion of both pfhrp2 and pfhrp3, to higher
levels. However, we have observed asignificant relationship between
deletions and malaria prevalence that aligns with recent mechanistic
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explanations of how pfhrp3 deletions arise and may be driven by low
malaria prevalence®. If malaria prevalence falls in a region, in addi-
tionto theincreased selection of pfhrp2 deletions that occurs at low
prevalence, the frequency of pfhrp3 deletions may also increase,
furthering the selection of pfhrp2 deletions. In response, additional
surveillance data of both pfhrp2 and pfhrp3 deletions are needed,
which canbeleveraged to test hypotheses of how non-RDT-mediated
processes drive pfhrp3 deletion emergence and subsequently create a
selective niche for pfhrp2 deletions. Last, although we have modeled
howHRP2-based RDTs create aselective pressure for pfhrp2 deletions,
this process does not capture the historic process by which pfhrp2
deletions have emerged in South America, which occurred without
this pressure. Theseresults are, however, still relevantinidentifying
that these regions are susceptible to selecting for deletions, given
the low malaria prevalence if they relied on HRP2-based RDTs, while
alsonoting that agreater understanding of the fundamental biology
and evolution that led to the selection of pfhrp2 deletions inregions
in South Americais needed.

Theissues surrounding spread of pfhrp2/3 deletions are not unique
to malaria. Management strategies for controlling RDT-evasive geno-
types can be borrowed from the drug-resistance management litera-
ture, which provides evaluations of how multiple antimalarial therapies
can be deployed®*’. RDTs employing multiple proteins for diagnosis
(for example, Pf-HRP2 and Pf-LDH) are analogous to combination
therapies, in that a parasite lineage would need to acquire two genetic
mechanisms simultaneously to evade detection. Deployment of both
HRP2-based RDTs and non-HRP2-based RDTs or microscopyinasingle
population is similar to the multiple first-line therapy® approach of
slowing down resistance, in that an RDT-evasive parasite is likely to
undergo diagnosis with a different RDT in the next patient whom it
infects. These approaches would first need to be field tested to ensure
adequate procurement, distribution and compliance before evaluat-
ing their potential for slowing down or reversing the evolution of RDT
evasion. Furthermore, these strategies become challenging for areas
sympatric for both P.falciparum and P. vivax, for which we would need
new RDTs at scale to address the current absence of WHO-prequalified
combination tests that use Pf-pLDH instead of, or in addition to, HRP2
for P falciparum detection. The decreased sensitivity for LDH relative
to HRP2 may, however, still result in a selective advantage, although
likely greatly reduced.

In conclusion, this study provides arefined and updated predic-
tion model for the emergence of pfhrp2/3 deletions. Despite its limita-
tions, our models offer valuable insights that can help policy-makers
prioritize surveillance and future deployment of alternative RDTs,
leveraging our interactive tool to identify the regions that are con-
sistently identified as high risk. It should also signal to test develop-
ers and manufacturers where new markets are likely to emerge first
for alternatives to exclusive HRP-RDTs. As our understanding of the
complex processes driving pfhrp2/3 deletions improves and more
data become available, we will continue to refine and update our
predictions and monitor the increasingly concerning threat posed
by pfhrp2/3 deletions.
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Methods

P. falciparum transmission model

Inthis study, we employed a previously developed, individually based,
mathematical model of P.falciparum malaria transmission to simulate
the selection of pfhrp2 deletions”. The model monitors the transmis-
sion of pfhrp2-deleted parasites and wild-type parasites (that is pfhrp2")
between human and mosquito hosts. We describe the model in brief
here (seeref.17 for the fullmodel description and parameters) before
detailing further considerations related to pfhrp3 dynamics and the
data sources used to parameterize the model for simulating pfhrp2
deletions globally.

Individuals are born with maternally acquired immunity that
decayswithinthefirst 6 months, rendering them susceptible to infec-
tion from infectious mosquito bites. Exposure depends on the ento-
mologicalinoculation rate, whichislocation specific. The rate at which
individuals are bitten by mosquitoes increases with age and is also
heterogeneous across the population due to individual-level biting
heterogeneity. Oninfection, individuals acquire either a pfhrp2-deleted
parasite or a wild-type parasite. This is determined by the genotype
frequency of pfhrp2-deleted parasites in humans 30 d previously,
which accounts for the lags of human exposure, parasite gametocy-
togenesis and sporozoite development in mosquitoes. After a short
latent period, infected individuals either develop clinical symptomatic
disease (probability determined by their level of blood-stage immunity,
with immunity increasing with age and exposure) or progress as an
asymptomatic infection. Symptomatic individuals may seek treat-
ment and they are assumed to be successfully treated unless they are
infected with only pfhrp2-deleted parasites and the decision to treatis
determined only by a positive HRP2-based RDT. All other possible out-
comes fromanindividual seeking treatment (nonadherence to negative
RDT outcome, positive HRP2-based RDT due to crossreactivity with
HRP3 epitopes, microscopy or alternative RDT (not exclusively reliant
on HRP2), used for diagnosis or the individual being treated without
being tested) resultin the individual being successfully treated. Once
treated, individuals undergo a prophylactic period before returning
to susceptibility. Asymptomatically infected individuals recover more
slowly, with detectability influenced by immunity levels. Superinfection
isincorporated, with asymptomatically infected individuals exposed
at the same rate as susceptible individuals. Acquired strains from
previous infection are naturally cleared after a period similar to the
duration of an asymptomatic infection that has not been extended
duetosuperinfection. Allinfected states are infectious to mosquitoes,
with infectivity dependent on detectability (serving as a surrogate
for asexual parasite density). Mosquitoes become infected at a rate
dependent on human population infectivity and become infectious
after approximately 10 d, reflecting the extrinsic incubation period.
The model has been parameterized by fitting it to data on the inter-
relationship of entomological inoculation rate, parasite prevalence,
clinical diseaseincidence and severe disease incidence. The model has
also been shown to accurately capture the selection and relationship
between pfhrp2 deletion frequency and transmission intensity in the
DRC" and later used to explain seasonal patterns in the detection of
pfhrp2 deletions®. Full mathematical details are available in ref. 17.

Pfhrp3 dynamics. In a previous modeling analysis, we assumed a
fixed probability of 25% that an individual infected with parasites with
only pfhrp2 deleted (that is, pfhrp3 present) would test positive by
HRP2-based RDTs due to crossreactivity with HRP3 epitopes. To more
accurately capture the role of pfhrp3, we conducted a scoping review of
RDT performance on pfhrp2 /pfhrp3’ clinical infections to estimate the
probability that a positive RDT would occur if pfhrp3is present. Second,
we noted that pfhrp3 deletions are frequently found at higher frequen-
ciesthan pfhrp2deletions, despite the latter providing agreater advan-
tage than the former with regard to the ability to evade diagnosis by
HRP2-based RDTs’. This observation reflects the mechanistic*® and soft

selective processes that are hypothesized toresultin the emergence of
pfhrp3deletions’. This observation s in contrast to the strong selective
sweeps associated with pfhrp2 deletions due to RDT-based test and
treatment that cause pfhrp2 deletions to be selected on both genetic
backgrounds, but more strongly on a pfhrp3-deleted background®.
Consequently, we continue to explicitly model only pfhrp2 deletions in
our model and estimate the probability that a pfhrp2-deleted parasite
has an intact pfhrp3 gene. If pfhrp3 is intact, the probability that an
individual will yield a positive HRP2-based RDT is determined by the
probability of HRP3 crossreacting, which is estimated later as part
of a model-fitting exercise. In effect, we model the probability that
an individual whose parasites have only pfhrp2 deletions would have
circulating HRP3 due to intact pfhrp3 and that these yield a positive
HRP2-based RDT due to crossreactivity with HRP3 epitopes.

To estimate the association or LD (between genes on different
chromosomes) between pfhrp2 and pfhrp3 deletions, we used all data
uploaded by February 2025 from the WHO Malaria Threat Maps® data
to calculate, per study, the total number of pfhrp2 /pfhrp3-, pfhrp2/
pfhrp3*, pfarp2*/pfhrp3™ and pfhrp2'/pfhrp3* samples. To mitigate
against likely differences in assay sensitivity and specificity between
surveys, weincluded in our analysis the surveys that also used an alter-
native diagnostic (microscopy or non-HRP2-based RDTs) and surveyed
symptomatic patients. Fromtheresultant2 x 2table, we calculated the
normalized coefficient of LD, D", given by:

@

where D is the coefficient of LD and D, is the theoretical maximum
difference between the observed and expected haplotype frequencies,
givenby:

5 max{—paps, —(1 — pa)(1 - pg)} whenD < 0 @
"™ min{ps(1 - pg). (- pp)ps} WhenD >0

where p, and p; are the frequencies of pfhrp2 and pfhrp3 deletions,
respectively. To estimate the likelihood that pfhrp2 deletions arise with-
out pfhrp3deletions, we calculated the proportion of all pfhrp2-deleted
infections without pfhrp3 deletions. For each continent, we fit a
beta-binomial distribution (to account for overdispersion across stud-
ies) tothe calculated study proportions, with the estimated mean used
torepresent the probability that pfhrp2 deletions would arise without
pfhrp3 deletions. We also estimated the relationship between the
proportion of pfhrp2 and pfhrp3 in samples and malaria prevalence
(estimated using Malaria Atlas Project data®) using overdispersed
binomial generalized linear models to describe the observed number
of deletionsin each survey and the number of samples tested.

Model parameters for modeling the selection of pfhrp2
globally

Creation of database of model parameters associated with the
strength of selection for pfhrp2/3 gene deletions. Based on previ-
ous modeling efforts, we identified a list of risk factors that impact
the speed of selection of pfhrp2 deletions (Extended Data Table 1).
We conducted an extensive literature and database review to source
estimates for each of the risk factors at the first administrative unit
(or national level if not available subnationally) for all countries with
stable malaria transmission. We used a three-step process by which we
arrived at estimates for each of the risk factors. In overview, instep 1,
we undertook a scoping review to identify whether suitable primary
databases for each risk factor were available. In step 2, we conducted
aliterature review to identify additional estimates to supplement or
update the databasesidentifiedin step 1. In step 3, we assessed whether
the estimates from steps 1and 2 provided additional data or insight
beyondthose produced by previous mathematical modeling exercises
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conducted by the Malaria Atlas Project as part of their commodities
forecast modeling exercise”, before collating data sources to be used
asinputsinto the pfhrp2transmission model (Supplementary Fig.13).
This decision was made because the Malaria Atlas Project commaodities
database provides estimates of the treatment cascade at anational level
(Supplementary Fig. 14), largely produced using statistical models fit
withthe DHS, Malaria Indicator Surveys, country DHIS2 databases and
the WHO World Malaria Report, alongside socioeconomic covariates
sourced from the Institute for Health Metrics and Evaluation. Conse-
quently, we sought to identify first whether primary data existed that
could be used, before relying on the commodity database estimates
if primary data were insufficient.

In step 1, we conducted a scoping review of suitable databases
already available for each of the factors, which have been collated
by international organizations and entities such as the WHO Global
Health Observatory (https://www.who.int/data/gho/data/themes/
topics/topic-details/GHO/malaria-testing-diagnosis), the Global Fund’s
Price and Quality Reports?, the President’s Malaria Initiative RDT
distribution data, ACTwatch project publications®* and DHS data. The
databasesidentified were standardized at the subnational or national
level where appropriate and those identified and how they were stand-
ardized for eachrisk factor are given in Supplementary Table 2.

Instep 2, aliterature review was conducted to identify additional
sourcestofill the gapsidentifiedin the databasesin step 1for anumber
of therisk factors. We constructed relevant search queries for each risk
factor (Supplementary Table 3), which were queried against PubMed.
Publications were screened based on inclusion and exclusion criteria
relevant for eachrisk factor (Supplementary Table 4), with the full text
ofidentified publications screened and relevant dataextracted for each
risk factor (Supplementary Table 5). All studies from which data were
extracted, as well as the identified target antigen(s) of all RDT listed
involume distribution data, are available in Supplementary Datal.

Most of the databases that we identified for sourcing parameters
in step 1 are the same as those used by the Malaria Atlas Project to
inform their commodities forecast modeling exercise. With regard to
adherence to RDT diagnostic test outcome, no primary database was
identified and the only suitable data source was that estimated by the
Malaria Atlas Project. From our literature review, we did not identify
any studies since 2015 that passed inclusion criteria. With regard to
RDT brand volume data, databases from the Global Fund’s Price and
Quality Reports® and the President’s MalariaInitiative®” provided RDT
volume datafor all countriesin Africa with malaria except for Equatorial
Guinea and Gabon. Although 25 additional studies passed inclusion
criteria for the literature search regarding RDT brands, none of the
studies included data on Equatorial Guinea and Gabon. In addition,
the included studies provided reports on the brands of RDTs used as
part of specific scientific investigations and did not necessarily reflect
national RDT types used. Last, regarding the size of the private market,
we identified 48 studies from 21 countries, of which 4 were from Asia.
Arange of different measures of the private versus public sector were
observed (percentage RDT manufacturer sales to private versus public,
surveys of treatment-seeking behavior, analysis of DHS Service Provi-
sion Assessment surveys). In addition, DHS data also provide reports
on where treatment seeking was sought in a number of DHS survey
rounds, which are the underlying data used by the Malaria Atlas Project
for modeling test adherence.

Based on the limited primary data, we ultimately relied on the
Malaria Atlas Project commodities database for most risk factors,
because it provided consistent, nationally representative estimates
that were not substantially improved on by additional primary or
literature sources. Exceptions to this were made only where data
were lacking (for example, RDT brand volumes to inform the propor-
tion of testing that uses HRP2-based RDT). The final inputs for the
malaria transmission model and their parameter source are provided
in Supplementary Table 6. We accounted for uncertainty in model

parameters as follows: for estimates from the Malaria Atlas Project
commodity dashboard, the 95% credible intervals estimated during
creation of the dashboard® were used for all-cause (private and pub-
lic) care seeking, microscopy use and test nonadherence. For malaria
prevalence, we used the 95% Cls of slide prevalence in 2-10 year olds
provided publicly by the Malaria Atlas Project®. No uncertainty was
available and thus not considered for the proportions of RDT brands
used that target only Pf-HRP2.

Refining estimates of fitness costs associated with pfhrp2 dele-
tions. One notable uncertainty for modeling pfhrp2-deleted parasites
is whether deleted parasites suffer a fitness cost and how that fitness
cost impacts the probability of deleted parasites being transmitted
onward. Asexual fitness costs have been measured by conducting
pairwise competition experiments in vitro, suggesting a fitness cost
of 8.7% (relative fitness of 91.3%) for pfhrp2-deleted parasite strains
and 11.3% (relative fitness of 88.7%) for strains with both pfhrp2 and
pfhrp3deletions®. These fitness costs were estimated by comparing the
growthof pfhrp2 and/or pfhrp3knocked-out strains againstacommon
competitor strain. Consequently, the inferred fitness costs reflect the
impact on asexual parasite growth in mixed infections. However, it is
unknown whether these measured fitness costs translate toareduction
inonward infection (how we model parasite fitness costs). Inaddition,
previous feeding assay studies have highlighted the importance of
measuring the fitness of both asexual and sexual stages to fully char-
acterize theimpact on population-level trends®®.

To estimate the fitness costs associated with pfhrp2 deletions in
our model, we used our transmission model to model the selection of
pfhrp2deletionsinEritrea and Ethiopia at each first administrative unit.
We chose Eritrea and Ethiopia for this parameter estimation exercise
because both countries contain at least three surveys collected over
time and represent known ‘hot spots’ of pfhrp2/3 deletions in Africa
that have also been shown to cause symptomatic infection. In addi-
tion, the surveys include data on pfhrp3 deletions, which allow for
the probability that pfhrp2 deletions occur with pfhrp3 deletions to
be estimated for each location (revealing that pfhrp2 deletions were
rarely observed without pfhrp3 deletions). Djibouti was not included
because, to date, there have been fewer than three surveys over time
among known symptomatic patients.

We statistically compared the modeled frequency of pfarp2 dele-
tions against representative pfhrp2 surveys from the WHO Malaria
Threat Maps tojointly infer parameter values for both the comparative
fitness costs and the crossreactivity of HRP3 epitopes. We used a Bayes-
ianapproach, withaflat prior for the fitness cost, with bounds centered
on the fitness cost estimated in the in vitro fitness study? (relative fit-
ness parameter bound between 0.8 and 0.99) and a beta distribution
(a=13,4=15) forthe probability of HRP3 crossreacting informed. This
prior was informed by studies of the performance of HRP2-based RDTs
onpfhrp2 /pfhrp3* samplesin Ethiopia, which observed 46.2% (12 of 26)
of samplesyielding a positive RDT. Although other studies in Djibouti**
and Uganda® reported lower crossreactivity (0 of 5and10f10 samples
crossreacting, respectively), we chose a prior based on the Ethiopian
study, given the location of the pfhrp2 surveys to which we are fitting
in Eritrea and Ethiopia and because no data were available in Eritrea
dueto previous studies either only observing pfhrp2 /pfhrp3 samples
or not testing pfhrp2/pfhrp3* samples with RDT. The log(likelihood)
values were calculated for each study by assuming that the proportion
of pfhrp2 deletions was described by an overdispersed binomial distri-
bution, with the number of samples genotyped in each study used as
the number of trials. Median estimates and 95% Cls for each parameter
were obtained from 1,000 draws from the posterior parameter space.

Pfhrp2 deletionrisk scores
In our previous analysis, we created risk scores of ‘HRP2 concern’.
To create these scores, we simulated trends in the prevalence of
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pfhrp2-deleted mutants across SSA. These simulations included esti-
mates of the mean, microscopy-based, P.falciparum prevalence in 2-10
year olds (PfPR,_,) in 2010 by the first administrative unit and estimates
ofthe proportion of cases seeking treatment from previously modeled
estimates using the DHS and the Malaria Indicator Cluster Surveys*’.
The time taken for the proportion of infections with all strains pfhrp2
deleted to reach 20% was recorded and classified to map areas of HRP2
concern under four qualitative classifications. This approach relied,
however, on a different metric (namely the proportion of infections
with all strains pfhrp2 deleted) to the 5% false-negative RDTs due to the
pfhrp2 deletion metric subsequently adopted by the WHO for deciding
when to switch RDTs?**. This metric is based on the proportion of clini-
cally relevant infections that would be misdiagnosed due to pfhrp2/3
gene deletions. To address this discrepancy, we produced maps of
two new risk scores—the ‘innate risk’ score and the ‘prospective risk’
score—based on the proportion of clinically relevant infections that
would be misdiagnosed due to pfhrp2/3gene deletions. To create these
new maps, we used updated estimates from 2020 for the parameters
described in Extended Data Table 1and assumed that these estimates
remain constant going forward, that is, malaria transmission inten-
sity, treatment-seeking data and RDT usage data remain the same as
estimated in 2020.

Innate risk score. The first risk score, the innate risk score, is the
innate potential for pfhrp2 deletions to spread once established in
aregion based solely on the region’s malaria transmission intensity,
treatment-seeking data and adherence to diagnostic test outcome.
Informed by the current 5% WHO threshold, we defined the innate risk
scoreasthe time taken for the percentage of clinical cases to be misdi-
agnosed by Pf-HRP2-based RDTs to increase from 1% (previously shown
to be asuitable threshold for defining establishment of P. falciparum
genetic traits under positive selection®) to 5%. We then used a similar
approachtoref.17 to categorize eachregion’sinnaterisk score. Here a
region’sriskis classified as high, moderate or slight, defined asreaching
the 5% threshold within 6,12 and 20 years, respectively, or marginal risk
if 5% is not reached within 20 years. Importantly, we did not incorpo-
rate dataonthe current types of RDT used in that country (these were
usedinthe prospectiverisk score). Consequently, theinnate risk score
reflects the risk that deletions would spread in a region if all types of
RDTsused were HRP2 based. Although most countries continue to use
only HRP2-based RDTs, anumber of countriesin SSA have switched to
non-HRP2-based RDTs: Eritrea, Djibouti and partially Ethiopia. Inthese
countries, the innaterisk score thus conveys therisk thatis still posed
if those countries reverted back to only HRP2-based RDTs.

To estimate the innate risk score for each administrative level 1
region, we first estimated the selection coefficient (the annual percent-
age change in logit genotype frequency”) for clinical cases to be misdi-
agnosed by Pf-HRP2-based RDTs. We estimated selection coefficients
using the following approach: we first created 8,748 unique parameter
sets that equally span the range observed globally for six model simula-
tion parameters that capture the drivers of pfhrp2/3 deletions detailed
inExtended Data Table 1: (1) the malaria prevalence; (2) the probability
of anindividual seeking treatment and being effectively treated after
having received a diagnostic test (capturing treatment-seeking rates
for fever, proportion of these occurring in the private sector, propor-
tion of individuals seeking care who receive a diagnostic test, the type
of RDT used); (3) the adherence to test outcomes for deciding on treat-
ment; (4) the proportion of all diagnoses that occur using microscopy;
(5) the relative fitness of pfhrp2-deleted parasites; and (6) the prob-
ability that an individual infected with only pfhrp2-deleted parasites
yields a positive HRP2-based RDT due to the parasites not having a
pfhrp3 deletion and the resultant HRP3 crossreacting with the RDT,
yielding a positive test.

For all parameter combinations, 5 stochastic realizations of
100,000 individuals were simulated for 40 yearsto reach equilibrium

first before simulating the selection of pfhrp2 deletions over the next
20 years, with a starting frequency of pfhrp2 deletions of 6%. The 6%
was chosen based onrecommendations made by a previous modeling
study*, which recommends selecting anallele frequency as low as pos-
sible to reflect the condition under which most selection occurs, but
also high enough to reduce stochastic noise in allele spread and allow
for more accurate estimation of selection coefficients from modeling
outputs. From each simulation, we recorded the monthly proportion
of clinically relevant infections that would be misdiagnosed due to
pfhrp2/3 gene deletions (that is, clinical infections only infected with
pfhrp2 deletions and not yielding a positive test due to HRP3). We
subsequently calculated selection coefficients (the annual percentage
changein proportion of misdiagnosed clinical cases) for each simula-
tion repetition by linear regression of the log(odds) of a clinical case
being misdiagnosed (Supplementary Fig. 15)***.

We next trained an ensemble machine learning model (for full
details, see ‘Ensemble machine learning model for predicting selec-
tion coefficients’) to predict selection coefficients based on model
simulation parameters detailed in Extended Data Table 1. Thisapproach
provides astatistical model that replicates the underlying transmission
model behavior that can be subsequently generalized to any transmis-
sion setting. From these models, we predicted how quickly the 5%
threshold willbe reached once pfhrp2 deletions have been established
in aregion (defined as 1% frequency based on previous antimalarial
resistance modeling exercises*). Uncertainty in selection coefficients
due to stochastic variation in model simulations was also estimated
using a similar statistical modeling framework.

Prospective risk score. The innate risk score, while capturing the
underlying selection dynamics, does notincorporate dataon the cur-
rentdistribution of pfhrp2/3 deletions in Africa. The second risk score,
which we called the prospective risk score, is calculated from a pro-
spective modeling approach designed to explore different scenarios
of how pfhrp2 deletions may continue to spread in Africa, based on
current estimates of the prevalence of pfhrp2 deletions from the WHO
Malaria Threat Maps. Although there are considerable uncertainties
in the prevalence of gene deletions across Africa’ and identifying the
true denominator inreported surveys is challenging’, these estimates
represent our best understanding of the current genotype frequency of
pfhrp2deletionsin Africa. Incountries without molecular surveillance
data, we assumed the current frequency of pfhrp2 deletions to be 0%.

Given the difficulty in estimating the rate at which malaria para-
sitesunder selection spread geographically*, we used asimple model
of parasite movement to describe how pfhrp2/3 deletions spread
between the first administrative units. To simulate the spread between
regions, we made the simplifying assumption that pfhrp2 deletions are
exported fromanadminlevel1region once pfhrp2 deletions have been
found in 25% of clinical cases; when this threshold has been reached,
pfhrp2-deleted parasites are seeded into neighboring regions such
that neighboring regions reach 1% genotype frequency after 1year.
Once aregionreaches al% genotype frequency, the future trajectory
of deletions in that region is solely determined by the selection coef-
ficient estimated for the region for a given parameter set. Given the
use of asingle fixed selection coefficient for eachregion, this assumes
that malaria prevalence and case management in each region remain
constant over time. Using this approach, we simulated a range of pos-
sible timelines for pfhrp2 deletions in Africa.

Ensemble machine learning model for predicting selection coef-
ficients. From our simulations previously described, we produced a
dataset of selection coefficients calculated using simulation outputs
correspondingto 5stochastic realizations for each of the 8,748 unique
sets of the 6 model simulation parameters that capture the drivers
detailed in Extended Data Table 1. We used the generated dataset to
train an ensemble statistical model to predict selection coefficients
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based on these six parameters described. Of the simulated datasets
25% were held back as an out-of-sample dataset to be used for evaluat-
ing the performance of the trained statistical models and to test for
overfitting. The remaining 75% of the simulated data was used for
training 3 different statistical models (shape-constrained additive
models, bagged multivariate regression splines and Bayesian regu-
larized neural networks) to predict selection coefficients using the
six varied transmission model parameters. Statistical model perfor-
mance was evaluated based on the root mean-squared error (RMSE).
Optimum model-fitting hyperparameters based on RMSE were first
identified by scanning over hyperparameters for each model before
fitting each model. When identifying hyperparameters and training
the finalmodel, K-fold crossvalidation sets were produced by splitting
the training data into 20 sets of training data with the results of the
crossvalidation subsequently averaged to reduce any bias from the
crossvalidation set chosen. We calculated the performance of each
trained model by calculating the RMSE for each model when tested
using the holdout dataset. To construct our final ensemble model,
we simply calculated the average across the three models, weighted
by their RMSE from the holdout test.

Uncertainty in selection coefficients due to stochastic variationin
model simulations was also estimated using a similar statistical mod-
eling framework (75% data split, hyperparameter tuning and 20-fold
crossvalidation). For each parameter set, we used each trained model to
first predict the selection coefficient. Next, we calculated the absolute
prediction error by comparing the model prediction against the selec-
tion coefficient for each stochastic realization, before calculating the
s.d. inthe error across stochastic realizations. We trained a Bayesian
regularized neural network model to predict the s.d. in error before
calculating robust Cls given by +1.96 x s.d.

We used the weighted average ensemble model to predict
selection coefficients for each first administrative unit based on the
malaria prevalence and treatment-related data for the administra-
tive unit. A complete schematic of this modeling pipeline is given in
Extended DataFig. 1.
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Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data for the R Shiny tool at https://worldhealthorg.shinyapps.io/
DeletionRiskExplorer are available via GitHub at https://github.com/
rjzupkoii/WHO-Malaria-pfhrp23(v.0.1.2). Alldataused in and generated
by this analysis are available in areproducible and version-controlled
Rresearch compendiumvia GitHub at https://github.com/QJWatson/
hrpup (v.0.3.0)*. This includes external datasets: WHO Malaria Threat
Maps (https://apps.who.int/malaria/maps/threats)®. No access restric-
tions apply; the repository and all associated data will remain publicly
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Code availability

All software developed, software packages used and code used for
data analysis are available in areproducible and version-controlled R
research compendium via GitHub at https://github.com/OJWatson/
hrpup (v.0.3.0)*. Source code is available via GitHub at https://github.
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Extended Data Table 1| Drivers of pfhrp2/3 deletion selection included in mathematical modelling

Drivers of pfhrp2/3 selection

Impact on speed of selection for pfhrp2/3 deletions

Data sources used

Malaria Prevalence

Lower malaria prevalence will increase selection pressure
by increasing the probability that individuals are only
infected with pfhrp2/3 deleted parasites and thus more
likely to not be treated. Additionally, lower malaria
prevalence will increase the probability that an infected
individual will develop a symptomatic infection (due to
lower immunity at lower transmission intersities), which in
turn influences the infected individual’s likelihood to seek
treatment.

Malaria Atlas Project maps of slide positivity
ages 2-10%,

Microscopy-based diagnosis

The use of microscopy for malaria diagnosis will decrease
selection pressure by negating the selective advantage
conferred by pfhrp2/3 deletions.

WHO World Malaria Report ‘proportion of cases
confirmed by diagnostic’ table, with missing data
imputed using all other collected model parameters.

Treatment-seeking rate for fever

Increased treatment-seeking will increase the rate at which
the selective advantage conferred by pfhrp2/3is able to be
realised by evading diagnosis and treatment.

Commodities Forecast Dashboard by the Malaria
Atlas Project”, which uses Demographic and Health
Surveys (DHS), Malaria Indicator Surveys (MIS),
Multiple Indicator Cluster Surveys (MICS) and AIDS
Indicator Surveys (AIS) in generalized additive mixed
model (GAMM) to predict treatment seeking patterns
over time.

Proportion of treatment-seeking for fever
in the private sector.

Low use of malaria rapid diagnostic tests has been shown
to exist in the private market in a number of locations™. If
the use of RDTs is lower in the private market than in the
public sector then selection pressure will decrease with an
increasingly large private drug market.

DHS/MIS Surveys used in GAMM for estimating
treatment seeking from any (medical) source and for
estimating treatment seeking in the public sector.

Proportion of individuals seeking care
who receive diagnostic test

Low use of any diagnostic test for guiding treatment
decisions will reduce selection pressure for pfhrp2/3
deletions.

DHS data (surveys in Africa asking if care-seeking
febrile children received a finger/heel prick).

Nonadherence to RDT outcomes

Nonadherence to RDT outcomes (treating RDT negative
individuals) will decrease selection pressure by negating
the selective advantage conferred by pfhrp2/3 deletions.

Commodities Forecast Dashboard by the Malaria
Atlas Project?’, which uses a statistical model of
the probability of care-seeking fevers receiving any
antimalarial informed by DHS and MIS data.

RDT brands

The use of non-HRP2-based RDTs will negate the selective
advantage conferred by pfhrp2/3 deletions.

Global Fund Price and Quality Reporting and
President’s Malaria Initiative data on volumes of RDT
test types and brands used.

Cross-reactivity of PFHRP3 epitopes

Increasing cross-reactivity between PfHRP3 epitopes and
PfHRP2-based RDTs will decrease selection pressure for
pfhrp2 deletions.

Estimate based upon WHO Malaria Threat Maps data
and studies reporting performance of HRP2-based
RDTs on pfhrp2-/pfhrp3+(>'*%9),

Fitness costs associated with pfhrp2/3
gene deletions.

Fitness costs associated with pfhrp2/3 gene deletions will
reduce the transmissibility of gene deleted parasites.

Parameterised via model fitting to Eritrean and
Ethiopian pfhrp2/3 deletion data, with priors from
in vitro competition assay data®.

Each row corresponds to a distinct driver, with the theoretical or observed impact of each driver explained. The final column describes the different data sources and methodologies used
to estimate values for each driver that are used as parameters in this modelling study. Parameter values for each driver were sourced at the national level, except for malaria prevalence and
treatment-seeking rates, which were sourced at the first administrative unit. See Supplementary Information for full methodology.
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selection coefficients from stochastic model simulations. b) Generating training model fitting exercises.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXO O O000XOS

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection as this was a simulation modelling study that used openly available datasets.
Data analysis All software developed, software packages used and code used for data analysis are available in a reproducible and version controlled R
research compendium at https://github.com/QJWatson/hrpup v0.3.0

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

A "Data Availability" section is included in the manuscript: "The data for the R Shiny tool at https://worldhealthorg.shinyapps.io/DeletionRiskExplorer is available
with the source code on GitHub at https://github.com/rjzupkoii/WHO-Malaria-pfhrp23 v0.1.2. All data used in and generated by this analysis are available in a
reproducible and version controlled R research compendium at https://github.com/OJWatson/hrpup v0.3.0. This includes external datasets: WHO Malaria Threat




Maps (https://apps.who.int/malaria/maps/threats/)3. No access restrictions apply; the repository and all associated data will remain publicly available indefinitely."

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Not applicable for our simulation modelling study

Reporting on race, ethnicity, or  Not applicable for our simulation modelling study
other socially relevant

groupings

Population characteristics Not applicable for our simulation modelling study

Recruitment

Ethics oversight

Not applicable for our simulation modelling study

Not applicable for our simulation modelling study

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|Z| Life sciences

|:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size
Data exclusions
Replication
Randomization

Blinding

Behaviou

Our study was a mathematical modelling study, using officially reported malaria hrp2/3 deletion data and as such does not include sample
sizes.

All reported malaria hrp2/3 deletion data was used that surveyed symptomatic individuals. For model fitting, all countries with at least 3 data
points per country were used.

5 stochastic realisations of model simulations were run for all model simulations, with the outputs used in training our statistical model
designed to emulate the behavior of the simulation model.

This is a population study using a simulation modeling approach of populations as one group and thus randomization is not applicable to the
study and we did not conduct any analyses requiring randomization.

Our study used publicly available, retrospective data sourced from an open database containing previously collected mutation prevalence
information. As this data was collected independently and prior to our analysis, with no interaction or intervention involving human
participants or

experimental procedures, the concept of blinding (as used in interventional or prospective observational studies) does not apply.
Consequently,

blinding was neither applicable nor feasible in this context.

ral & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description

Research sample

Sampling strategy

Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional,
quantitative experimental, mixed-methods case study).

State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic
information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For
studies involving existing datasets, please describe the dataset and source.

Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to
predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a
rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and
what criteria were used to decide that no further sampling was needed.
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Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper,
computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and
whether the researcher was blind to experimental condition and/or the study hypothesis during data collection.

Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample
cohort.

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the
rationale behind them, indicating whether exclusion criteria were pre-established.
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Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no
participants dropped out/declined participation. =

Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if
allocation was not random, describe how covariates were controlled.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
hierarchical), nature and number of experimental units and replicates.

Research sample Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National
Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and
any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets,

describe the data and its source.

Sampling strategy Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size
calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient.

Data collection Describe the data collection procedure, including who recorded the data and how.
Timing and spatial scale |/ndicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for
these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which

the data are taken

Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them,
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.

Did the study involve field work? [] Yes []No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).
Access & import/export | Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods




We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChlIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry

Palaeontology and archaeology |Z |:| MRI-based neuroimaging
Animals and other organisms

Clinical data
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Antibodies

Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines  pgme any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable,

export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field, report species and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.




Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex.
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall
numbers in this Reporting Summary. Please state if this information has not been collected. Report sex-based analyses where
performed, justify reasons for lack of sex-based analysis.

Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.
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Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[] Public health

|:| National security

|:| Crops and/or livestock

|:| Ecosystems
|:| Any other significant area
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Experiments of concern

Does the work involve any of these experiments of concern:

Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents
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Plants

Seed stocks

Novel plant genotypes

Authentication

ChlP-seq

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied. ) )
Describe-any-atithentication-procedtres foreach seed stock- tised-ornovel genotype generated—Describe-any-experiments-tsed-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,

May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session
(e.g. UCSC)

Methodology

Replicates

Sequencing depth
Antibodies
Peak calling parameters

Data quality

Software

Flow Cytometry

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
enable peer review. Write "no longer applicable" for "Final submission" documents.

Describe the experimental replicates, specifying number, type and replicate agreement.

Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and
lot number.

Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files
used.

Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Describe the software used to collect and analyze the ChlP-seq data. For custom code that has been deposited into a community
repository, provide accession details.

Plots
Confirm that:

|:| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|:| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

|:| All plots are contour plots with outliers or pseudocolor plots.

|:| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation
Instrument

Software

Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
Identify the instrument used for data collection, specifying make and model number.

Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.
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Cell population abundance

Gating strategy

Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the
samples and how it was determined.

Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design
Design type

Design specifications

Indicate task or resting state; event-related or block design.

Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used

Acquisition
Imaging type(s)

Field strength

Sequence & imaging parameters

Area of acquisition

Diffusion MRI [ ] used

Preprocessing

Preprocessing software
Normalization
Normalization template
Noise and artifact removal

Volume censoring

to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across
subjects).

Specify: functional, structural, diffusion, perfusion.
Specify in Tesla

Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

D Not used

Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings

Effect(s) tested

Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether

ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based [ ] Both

Statistic type for inference

(See Eklund et al. 2016)

Correction

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).
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Models & analysis

n/a | Involved in the study
|:| Functional and/or effective connectivity

IZ |:| Graph analysis

|:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.qg. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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