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Abstract. Malaria due to the Plasmodium falciparum parasite remains a threat to 
human health despite eradication efforts and the development of anti-malarial 
treatments, such as artemisinin-based combination therapies. Human movement 
and migration have been linked to the propagation of malaria on national scales, 
highlighting the need for the incorporation of human movement in modeling ef-
forts. Individual-based models have been used to study how anti-malarial re-
sistance evolves and spreads in response to drug policy changes; however, as the 
spatial scale of the model increases, the challenges associated with modeling of 
movement also increase. In this paper we discuss the development, calibration, 
and validation of a movement model in the context of a national-scale, spatial, 
individual-based model used to study the evolution of drug resistance in the ma-
laria parasite. 
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1 Introduction 

The promulgation of the United Nations Millennium Development Goals, and specifi-
cally Goal 6 to combat HIV/AIDS, malaria, and other diseases has resulted in a renewed 
global interest in malaria eradication. Despite the efforts of the past 20 years, malaria 
caused by the Plasmodium falciparum parasite remains a serious public health concern 
with 229 million cases and 409 thousand deaths estimated in 2019 [1]. One significant 
barrier to eradication efforts is the evolution of anti-malarial resistance by the parasite, 
with resistance to the artemisinin components of artemisinin-based combination thera-
pies (ACTs) being of particular concern [1]. While the primary driver of anti-malarial 
resistance is the evolutionary pressure applied on the parasite through the use of anti-
malarial treatments (e.g., ACTs), a resistant parasite may also appear in a region due to 
importation though human movement (e.g., temporary travel for work or leisure) or 
migration (i.e., permanent relocation) [2]. 

One means of studying the evolution of anti-malarial resistance, and the impact that 
various drug policies may have upon it, has been through the use of individual-based 
models (IBMs) that incorporate components such as transmission of the parasite, im-
mune acquisition and response, genotype evolution, and drug intervention strategies 
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[3]. By incorporating space and geography in these models, it may be possible to eval-
uate regionally targeted interventions, or observe possible patterns in the development 
of anti-malarial resistance, allowing for new eradication strategies to be developed. Ac-
cordingly, modeling efforts must be accompanied by a model of human movement in 
order to account for the carriers of anti-malarial resistant parasites. However, national 
scale simulations may incorporate millions of simulated individuals (i.e., agents), 
spread across thousands of cells representing simulated space, resulting in challenges 
of model implementation, calibration, and validation.  

1.1 Malaria in Burkina Faso 

Fig. 1. Annual mean prevalence of P. falciparum malaria in Burkina Faso in two-to-ten-year-old 
children, as of 2017 [4]. Each cell (i.e., pixel) represents a 5 km by 5 km (25 sq.km) block of land 
and the prevalence scale ranges from 8% to 68%. 

Burkina Faso is a landlocked country in western Sub-Saharan African (SSA) with en-
demic malaria (i.e., persistent transmission of the infection in the population), which is 
the leading cause of hospitalization in the general population (45.8% of hospitaliza-
tions) as well as for children under five (48.2% of hospitalizations) [5, 6]. During peri-
ods of seasonal rainfall, the P. falciparum prevalence rate in the two- to ten-year-old 
population (called 
PfPR2-10) may increase significantly in relation to the annual mean PfPR2-10 which 
ranges from 8.0% to 67.6% using 2017 estimates [4]. The primary first-line therapies 
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for uncomplicated malaria are ACTs, such as artemether-lumefantrine or dihydroarte-
misinin-piperaquine, which have been recommended since 2005 in accordance with 
WHO guidelines [7]. ACTs are used in conjunction with other malaria intervention 
programs such as insecticide-treated mosquito nets (ITNs), indoor residual spraying 
(IRS), and intermittent preventative treatment of pregnant women (IPTp). As a result 
of ACT usage and these other interventions, the general worldwide trend since 2005 
has been a reduction in the prevalence of malaria [8]. 

1.2 Movement Models 

 

Fig. 2. Site of surveys by Marshall et al. [9], where red stars represent the approximate locations 
of the survey sites. The densely populated region in the center is the capital Ouagadougou. (Map 
prepared by the authors, population data from WorldPop [10]) 
 
Since human movement and migration has been linked to the migration of drug-re-
sistant genotypes [2], incorporation of human movement is a relevant component of an 
IBM. The two most common mathematical models of human movement in the SSA 
region are the gravity and radiation models [11, 12]. Gravity models are constructed 
with the assumption that movement rates between two points (e.g., cities) increase in 
relation to the size of the point populations and decrease with the square of the distance 
between them; similar to the physical laws of gravitation. Gravity models may be mod-
ified with functions that account for other parameters, such as mode and cost of travel. 
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Radiation models draw their inspiration from physical processes (i.e., particle diffu-
sion), but differ from gravity models in that the underlying assumption is that individ-
uals move outward from their origin and are “absorbed” by a given destination, within 
a given distance, with a probability that is proportionate to the population of a given 
destination. 

In the most recent study of movement in Burkina Faso, Marshall et al [9] surveyed 
three sites (Ouagadougou, Saponé, and Boussé) during the rainy season of July 2011 
(Fig. 2), recording the number of trips by both source and destination. The survey data 
were then used to fit mathematical models, and the authors concluded that a gravity 
model with a power-law distance kernel had the most predictive power in relation to 
the observed movement patterns [11]. However, in the context of SSA it has been sug-
gested that countries may follow unique patterns that are not perfectly explained by 
either the gravity or radiation model in their unmodified forms [12], indicating that 
further work may be needed in order to ensure that a mathematical model is appropri-
ately fit to a given country. 

2 Model Design 

2.1 Mathematical Model 

The general success and application of gravity models for human movement and mi-
gration in SSA, coupled with the recent work by Marshall et al. [9,11], motivated us to 
use the modified gravity model suggested by Marshall et al.: 

 

 𝑃𝑃𝑃𝑃(𝑗𝑗|𝑖𝑖) ∝ 𝑃𝑃𝑃𝑃𝑝𝑝𝑗𝑗τ𝑘𝑘�𝑑𝑑𝑖𝑖,𝑗𝑗� (1) 

 𝑘𝑘�𝑑𝑑𝑖𝑖,𝑗𝑗� = �1 +
𝑑𝑑𝑖𝑖,𝑗𝑗
ρ
�
−α

 (2) 

 
Where Pr(j|i) describes the probability of travel from the source i to the destination j, 
given the product of (1) the population of j raised to τ and (2) the distance kernel, which 
takes the form of a power law containing the scale parameter ρ, and the power-law 
parameter α. 

A limitation of the model constructed by Marshall et al. [11] is the lack of consider-
ation for the time, distance, or complexity in traveling to a given destination. One means 
of capturing the difficulty associated with travel is through the use of a friction surface, 
which quantifies the ease or difficulty in traversing surfaces (e.g., road types) or natural 
barriers such as mountainous terrain [13]. An alternative is the use of a travel time map 
(or surface) which estimates the time to reach the nearest city (or high-density urban 
area [14]) from a given location on the map. The use of travel time map, such as the 
one prepared by the Malaria Atlas Project [14], is appropriate in the context of malaria 
interventions since rural communities may lack local medical resources, necessitating 
travel to seek care [2, 15]. 
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Accordingly, the probability of movement can be adjusted to use travel times as fol-
lows: 

 𝑃𝑃𝑃𝑃(j|i)′ = 𝑃𝑃𝑃𝑃(𝑗𝑗|𝑖𝑖)
(1+𝑡𝑡𝑖𝑖+𝑡𝑡𝑗𝑗)

 (3) 

 
Where Pr(j|i)′ describes the new probability of travel from source i to the destination j, 
by dividing the original probability Pr(j|i) by the sum of one plus travel time to the 
nearest city of the source ti and destination tj. This has the effect of biasing the model’s 
movement towards destination cells that are located in  or near cities, but still allowing 
travel between rural locations, or from a city to a rural location. 
 

Fig. 3. Inclusion of source ti and destination tj travel time allows for the probability of indirect or 
blocked routes to be determined. If the travel time from one or both rural destinations to the city 
is large, this means that travel around the rural locations is high-friction (i.e., neither easy nor 
fast). As a result, the probability of movement to or from locations i and j is decreased via Equa-
tion 3. 
 

Incorporation of both the source ti and destination tj in the denominator of Equation 
3 is necessary as it properly accounts for indirect travel routes. For example, in Fig. 3, 
direct travel between the source i and destination j is blocked by a barrier and thus travel 
must be routed through a city or circuitous road. Conversely, since the travel time map 
is based upon the time to the nearest city, when travel is unrestricted (i.e., the destina-
tion is in a city) the value of tj would be zero representing direct unrestricted travel. 
Finally, when both i and j represent cells within a city, the original probability Pr(j|i) 
remains unadjusted. As a result, during model calibration, care must be taken to ensure 
that the number of trips within a city or province, or between cities, are properly mod-
eled. 
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2.2 Implementation 

The mathematical model described in Section 2.1 was incorporated, along with other 
spatial changes such as the ability to read raster-based data files, into an IBM previously 
developed by Nguyen et al. [3] in C++.1 As an organizational matter, the movement 
model was implemented as a new class, which implements an abstract class defined by 
the IBM for movement models. The integration of the movement model into the IBM 
can be summarized as follows. First, geographic data (i.e., population, travel times) is 
read from disk into memory using an object that implements the singleton pattern. Next, 
for each daily model timestep following execution of other population events (e.g., in-
fections, births, deaths), iterate through each cell in the model and calculate the number 
of individuals leaving the cell. This follows the calculation of Pr(j|i)’ from the current 
cell i to every other cell, and the resulting vector is used to perform a random multino-
mial draw for each individual, indicating their destination cell. Individuals are then 
moved to their destination cell with a timer set for when they will return to the original 
cell simulating movement, or with no timer indicating permanent migration to the new 
cell. Model execution then proceeds to the next timestep. 

The incorporation of the movement model into the IBM resulted in a number of time 
and space complexity challenges, and analysis of the source code suggests an algorith-
mic complexity of O(n3) with a space complexity of O(n) for the calculation of travel-
time probabilities. During implementation of the movement model, static memory 
along with a singleton design pattern was used to eliminate the need to reload or copy 
geographic data, which is represented in memory as either a matrix or a flat array. While 
it was originally hypothesized during development that the probability of movement 
could be calculated once at model initialization based upon the initialization parame-
ters, doing so resulted in artifacts appearing in agent movement over time. However, 
when the probability is calculated during each timestep (i.e., in a manner consistent 
with population growth in the simulation) the model performed as expected suggesting 
that caching of calculated movement probabilities is unlikely to be possible. This sug-
gests that most optimizations are likely to come from careful programming and code 
organization to minimize the number of times that movement probabilities need to be 
calculated per timestep. 

Finally, in preparing the spatial data used for the calibration of Burkina Faso, the 
limiting factor of the spatial resolution is the cellular size of the reference PfPR2-10 val-
ues provided by the Malaria Atlas Project [4], resulting in a cell size of 25 sq.km. This 
results the approximately 273,000 sq.km of Burkina Faso being converted into 10,936 
pixels (or cells). Initial population data comes from WorldPop [10], which was aggre-
gated using the sum function of ArcMap 10.7.1 to 25 sq.km cells, resulting in pixel 
level populations ranging from 1 to 206,607 individuals per cell. The travel time map 
uses the Malaria Atlas Project travel time to cities map [14]; however, the original 1 
sq.km cells are aggregated up to 25 sq.km using the mean function with a cell factor of 
5. 

 
1 The source code for the simulation is hosted on GitHub at https://github.com/rjzupkoii/PSU-

CIDD-Malaria-Simulation and the work described in this manuscript uses the version 4.0.0 
release of the simulation. 

https://github.com/rjzupkoii/PSU-CIDD-Malaria-Simulation
https://github.com/rjzupkoii/PSU-CIDD-Malaria-Simulation
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3 Calibration and Validation 

Model calibration and validation took place in two parts following implementation and 
initial verification of code correctness. Outside the work done by Marshall et al [9] 
introduced in Section 1.2, there is a lack of quantitative travel data for Burkina Faso 
that can be used to robustly calibrate and validate the model. Furthermore, the work by 
Marshall et al [9] is limited due to three factors. First, the section of survey sites is 
clustered in the central region around the capital Ouagadougou and does not incorporate 
other regions such as Houet in south-west Burkina Faso. Second, the sampling sites 
used in the survey resulted in travel between most of the provinces in Burkina Faso not 
being captured in the respondent data, limiting the overall predictive power of any mod-
els derived from it. Finally, the time of the survey during the rainy season also intro-
duces biases due to seasonal migration patterns. As a result, model calibration and val-
idation were performed with these limitations in mind and the objective was not to 
ensure complete model fidelity to the survey data, but rather to ensure that agent move-
ment does not deviate significantly from expectations. 

With the limitations of the underlying validation data in mind, parameterization of 
the movement equations proceeded by first selecting the value for the scale parameter 
ρ based upon the loge(ρ) range of values suggested by Marshall et al [11]. To do so, a 
“synthetic survey” was performed in Matlab 2019b which approximated the sampling 
of the Marshall et al. [6] survey.2 This was done by applying the gravity model fit by 
Marshal et al [7] (Equations 1 and 2) using population of the province as Popj, the 
distance from the sampling site to the centroid of the province as di,j iterating through 
values 0.05 to 1.8 by steps of 0.05 for loge(ρ), and then performing a random draw of 
samples equal to the number of survey participants. This was done for a total of 1,000 
trials for each value to ensure sufficient statistical power. The results of the synthetic 
survey were then compared to the survey data from Marshall et al. [9] and the number 
of matches and inter-quartile ranges (IQR) were compared. While Marshall et al. [11] 
suggests loge(ρ) = 0.45 as the best fit, the value loge(ρ) = 0.20 was selected here as it 
offered the most IQR matches along with a low mean squared error. To further validate 
this result, the loge(ρ) parameter was input as a simulation parameter and the frequency 
of trips and distanced traveled where then compared to the survey data resulting in 
generally favorable results (Fig. 4). However, it is important to note that agreement 
between model and data will always be difficult in a calibration like this when the total 
number of trips is very low (e.g., <5 trips during a survey period). 

 
2 The source code for the synthetic survey can be found at https://github.com/rjzupkoii/PSU-

CIDD-Burkina-Faso/tree/master/Analysis/Movement 
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Fig. 4. Frequency plot of simulated trips from a source to destination province, plotted against 
the distance between the province centroids. Note that in the case of Kadiogo, containing the 
capital Ouagadougou, the results compare favorably to the survey data. However, the mathemat-
ical model’s predictive power is worse for Kourweogo and Bazega, where less respondent data 
was available. 

Following selection of the scale parameter ρ, the inferred values α = 1.27 and τ = 
1.342, as fit by Marshall et al. [11], were used as part of a simulation of the entire 
country for 12 months with a population of approximately 19 million individuals 
wherein all travel between cells was logged. The cell-to-cell travel was aggregated up 
to the province level to allow for comparison to Marshall et al. [9] survey data, and also 
plotted as a monthly heatmaps of arrivals. The process of doing so revealed that that 
Pr(j|i)′ provides a reasonable probability of movement from the source to destination 
in regions of high, geographically dispersed populations.  

However, in Kadiogo province, containing the capital Ouagadougou, the model was 
biased towards movement remaining within the district. Examination of the probabili-
ties calculated for the cells within the province showed a higher likelihood as a result 
of the higher local population density in relation to the rest of the country, thus biasing 
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the results. In order to correct this bias, an intra-province travel penalty was introduced 
wherein Pr(j|i)′ is divided by the penalty p when the source and destination cells are 
both within the capital province. A 12-fold intra-province penalty was determined for 
Kadiogo following additional calibration runs of the model which is applied by dividing 
Pr(j|i)’ by 12 when the source i and destination j is within the capital province. 

The final point of calibration and validation for the movement model was the number 
of trips taken. The survey by Marshall et al [9] indicates that about 29.1% of the popu-
lation travels on a yearly basis with a mean number of 3.42 trips. This suggests a daily 
circulation rate (i.e., the daily probability of an individual traveling) of 0.002727 for 
travelers leaving their home province. However, since the model allows for intra-prov-
ince travel, it is necessary to introduce an adjustment to this value. Individual move-
ment was tracked in the model and various circulation rates trialed until the national 
level annual rates (29.1%) were matched by a daily circulation rate of 0.00336. As a 
result, approximately 19% of all simulated trips are to cells within the same province 
while the remainder leave the province. Ultimately the movement model and its param-
eterization results in individual movement within the model that is consistent with 
movement focused on major population centers and following national transportation 
networks (Fig. 5). 
 

 

Fig. 5. Heat map of trips to the destination cell over the course of month. Note that destination 
for trips approximates the population distribution of the country with Ouagadougou (central) and 
Bobo-Dioulasso (west) being distinguishable along with smaller towns and villages.  

4 Discussion and Conclusion 

For individual-based epidemiological models of malaria, an appropriate model of 
movement by individuals is necessary due to the role that human migration plays in the 
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spread of anti-malarial resistance. However, the development, calibration, and valida-
tion of IBMs incorporating such a movement model, particularly at the national scale, 
remains a challenge. These challenges can be further compounded by the lack of quan-
titative data available for a given country of interest. Despite this, IBMs and mathemat-
ical modeling more broadly still play an important role in malaria control with national 
scale models offering possible insights for surveillance and drug policy response [16]. 

One of the advantages of geospatially coupled malaria models is that they can offer 
projections for where anti-malarial resistance surveillance efforts may be focused. 
Given the parameterization and the sub-models necessary in a malaria IBM (e.g., trans-
mission, human immune progression, human movement patterns, etc.) the ability to 
project where drug resistance is more likely to emerge is a natural by-product when 
genotype evolution is incorporated. However, the validity of these projections is de-
pendent, in part, upon the movement model being appropriate for a region and properly 
calibrated. 

An important application of malaria IBMs is evaluation of how changes in drug pol-
icy (e.g., changing the partner drug in an ACT or introducing multiple first-line thera-
pies [see 3, 17, 18]) impact the emergence of drug resistance by the parasite. The con-
nection between antimalarial drugs and de novo emergence of resistance has been well 
established [19-21], accordingly it is not a matter of “if” drug resistance will emerge, 
but rather when. However, the role that human migration plays in introducing an anti-
malarial resistant parasite to a region remains unclear. This question can only be ad-
dressed through the incorporation of a calibrated and validated model of human move-
ment and migration. 

A standard equation or a regionally calibrated movement model, such as the one 
developed by Marshall et al. [11], is unlikely to meet the needs of a model developer 
“out of the box.” While a published parameterization may offer a useful starting point 
for model developers, additional algorithm development, parameterization, and calibra-
tion steps are necessary to ensure that the model is appropriate for expected movement 
in a region, and the goals of the model. This movement model demonstrates one ap-
proach that can be used to improve fidelity though the use of a travel time map. As 
always, model developers should be diligent during the calibration and validation pro-
cess to ensure that model outputs make sense in the context of quantitative and qualita-
tive data that is available. 

In summary, while the introduction of an anti-malarial resistant P. falciparum para-
sites to a region through human movement and migration is just one mechanism by 
which resistance can appear; it is necessary that IBMs modeling malaria epidemiology 
properly account for it. As this paper has demonstrated, it is possible to scale-up math-
ematical models to be utilized in national-scale IBMs; however, performance, calibra-
tion, and validation are all challenges that require careful investigation. Furthermore, 
the availability of data for a region of study can place limitations on the extent of vali-
dation that is possible, necessitating some caution in the claims that can be made by 
simulating specific scenarios.  
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